aboutsummaryrefslogtreecommitdiff
path: root/plat/nxp/soc-ls1028a/soc.c
blob: edfd6573d0ed4ae6f59e2e96c2861e497a99ba50 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
/*
 * Copyright 2018-2021 NXP
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#include <endian.h>

#include <arch.h>
#include <caam.h>
#include <cassert.h>
#include <cci.h>
#include <common/debug.h>
#include <dcfg.h>
#include <i2c.h>
#include <lib/xlat_tables/xlat_tables_v2.h>
#include <ls_interconnect.h>
#include <mmio.h>
#ifdef POLICY_FUSE_PROVISION
#include <nxp_gpio.h>
#endif
#if TRUSTED_BOARD_BOOT
#include <nxp_smmu.h>
#endif
#include <nxp_timer.h>
#ifdef CONFIG_OCRAM_ECC_EN
#include <ocram.h>
#endif
#include <plat_console.h>
#include <plat_gic.h>
#include <plat_tzc400.h>
#include <pmu.h>
#include <scfg.h>
#if defined(NXP_SFP_ENABLED)
#include <sfp.h>
#endif

#include <errata.h>
#include "plat_common.h"
#include "platform_def.h"
#include "soc.h"

static dcfg_init_info_t dcfg_init_data = {
	.g_nxp_dcfg_addr = NXP_DCFG_ADDR,
	.nxp_sysclk_freq = NXP_SYSCLK_FREQ,
	.nxp_ddrclk_freq = NXP_DDRCLK_FREQ,
	.nxp_plat_clk_divider = NXP_PLATFORM_CLK_DIVIDER,
};

static struct soc_type soc_list[] =  {
	SOC_ENTRY(LS1017AN, LS1017AN, 1, 1),
	SOC_ENTRY(LS1017AE, LS1017AE, 1, 1),
	SOC_ENTRY(LS1018AN, LS1018AN, 1, 1),
	SOC_ENTRY(LS1018AE, LS1018AE, 1, 1),
	SOC_ENTRY(LS1027AN, LS1027AN, 1, 2),
	SOC_ENTRY(LS1027AE, LS1027AE, 1, 2),
	SOC_ENTRY(LS1028AN, LS1028AN, 1, 2),
	SOC_ENTRY(LS1028AE, LS1028AE, 1, 2),
};

CASSERT(NUMBER_OF_CLUSTERS && NUMBER_OF_CLUSTERS <= 256,
	assert_invalid_ls1028a_cluster_count);

/*
 * Function returns the base counter frequency
 * after reading the first entry at CNTFID0 (0x20 offset).
 *
 * Function is used by:
 *   1. ARM common code for PSCI management.
 *   2. ARM Generic Timer init.
 *
 */
unsigned int plat_get_syscnt_freq2(void)
{
	unsigned int counter_base_frequency;
	/*
	 * Below register specifies the base frequency of the system counter.
	 * As per NXP Board Manuals:
	 * The system counter always works with SYS_REF_CLK/4 frequency clock.
	 */
	counter_base_frequency = mmio_read_32(NXP_TIMER_ADDR + CNTFID_OFF);

	return counter_base_frequency;
}

#ifdef IMAGE_BL2

#ifdef POLICY_FUSE_PROVISION
static gpio_init_info_t gpio_init_data = {
	.gpio1_base_addr = NXP_GPIO1_ADDR,
	.gpio2_base_addr = NXP_GPIO2_ADDR,
	.gpio3_base_addr = NXP_GPIO3_ADDR,
};
#endif

void soc_preload_setup(void)
{
}

void soc_early_init(void)
{
	uint8_t num_clusters, cores_per_cluster;

#ifdef CONFIG_OCRAM_ECC_EN
	ocram_init(NXP_OCRAM_ADDR, NXP_OCRAM_SIZE);
#endif
	dcfg_init(&dcfg_init_data);
	enable_timer_base_to_cluster(NXP_PMU_ADDR);
	enable_core_tb(NXP_PMU_ADDR);
	dram_regions_info_t *dram_regions_info = get_dram_regions_info();

#ifdef POLICY_FUSE_PROVISION
	gpio_init(&gpio_init_data);
	sec_init(NXP_CAAM_ADDR);
#endif

#if LOG_LEVEL > 0
	/* Initialize the console to provide early debug support */
	plat_console_init(NXP_CONSOLE_ADDR,
				NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE);
#endif
	enum  boot_device dev = get_boot_dev();
	/*
	 * Mark the buffer for SD in OCRAM as non secure.
	 * The buffer is assumed to be at end of OCRAM for
	 * the logic below to calculate TZPC programming
	 */
	if (dev == BOOT_DEVICE_EMMC || dev == BOOT_DEVICE_SDHC2_EMMC) {
		/*
		 * Calculate the region in OCRAM which is secure
		 * The buffer for SD needs to be marked non-secure
		 * to allow SD to do DMA operations on it
		 */
		uint32_t secure_region = (NXP_OCRAM_SIZE - NXP_SD_BLOCK_BUF_SIZE);
		uint32_t mask = secure_region/TZPC_BLOCK_SIZE;

		mmio_write_32(NXP_OCRAM_TZPC_ADDR, mask);

		/* Add the entry for buffer in MMU Table */
		mmap_add_region(NXP_SD_BLOCK_BUF_ADDR, NXP_SD_BLOCK_BUF_ADDR,
				NXP_SD_BLOCK_BUF_SIZE, MT_DEVICE | MT_RW | MT_NS);
	}

#if TRUSTED_BOARD_BOOT
	uint32_t mode;

	sfp_init(NXP_SFP_ADDR);

	/*
	 * For secure boot disable SMMU.
	 * Later when platform security policy comes in picture,
	 * this might get modified based on the policy
	 */
	if (check_boot_mode_secure(&mode) == true) {
		bypass_smmu(NXP_SMMU_ADDR);
	}

	/*
	 * For Mbedtls currently crypto is not supported via CAAM
	 * enable it when that support is there. In tbbr.mk
	 * the CAAM_INTEG is set as 0.
	 */
#ifndef MBEDTLS_X509
	/* Initialize the crypto accelerator if enabled */
	if (is_sec_enabled()) {
		sec_init(NXP_CAAM_ADDR);
	} else {
		INFO("SEC is disabled.\n");
	}
#endif
#endif

	/* Set eDDRTQ for DDR performance */
	scfg_setbits32((void *)(NXP_SCFG_ADDR + 0x210), 0x1f1f1f1f);

	soc_errata();

	/*
	 * Initialize Interconnect for this cluster during cold boot.
	 * No need for locks as no other CPU is active.
	 */
	cci_init(NXP_CCI_ADDR, cci_map, ARRAY_SIZE(cci_map));

	/*
	 * Enable Interconnect coherency for the primary CPU's cluster.
	 */
	get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
	plat_ls_interconnect_enter_coherency(num_clusters);

	delay_timer_init(NXP_TIMER_ADDR);
	i2c_init(NXP_I2C_ADDR);
	dram_regions_info->total_dram_size = init_ddr();
}

void soc_bl2_prepare_exit(void)
{
#if defined(NXP_SFP_ENABLED) && defined(DISABLE_FUSE_WRITE)
	set_sfp_wr_disable();
#endif
}

/*
 * This function returns the boot device based on RCW_SRC
 */
enum boot_device get_boot_dev(void)
{
	enum boot_device src = BOOT_DEVICE_NONE;
	uint32_t porsr1;
	uint32_t rcw_src;

	porsr1 = read_reg_porsr1();

	rcw_src = (porsr1 & PORSR1_RCW_MASK) >> PORSR1_RCW_SHIFT;
	switch (rcw_src) {
	case FLEXSPI_NOR:
		src = BOOT_DEVICE_FLEXSPI_NOR;
		INFO("RCW BOOT SRC is FLEXSPI NOR\n");
		break;
	case FLEXSPI_NAND2K_VAL:
	case FLEXSPI_NAND4K_VAL:
		INFO("RCW BOOT SRC is FLEXSPI NAND\n");
		src = BOOT_DEVICE_FLEXSPI_NAND;
		break;
	case SDHC1_VAL:
		src = BOOT_DEVICE_EMMC;
		INFO("RCW BOOT SRC is SD\n");
		break;
	case SDHC2_VAL:
		src = BOOT_DEVICE_SDHC2_EMMC;
		INFO("RCW BOOT SRC is EMMC\n");
		break;
	default:
		break;
	}

	return src;
}

/*
 * This function sets up access permissions on memory regions
 ****************************************************************************/
void soc_mem_access(void)
{
	dram_regions_info_t *info_dram_regions = get_dram_regions_info();
	struct tzc400_reg tzc400_reg_list[MAX_NUM_TZC_REGION];
	int dram_idx = 0;
	/* index 0 is reserved for region-0 */
	int index = 1;

	for (dram_idx = 0; dram_idx < info_dram_regions->num_dram_regions;
	     dram_idx++) {
		if (info_dram_regions->region[dram_idx].size == 0) {
			ERROR("DDR init failure, or");
			ERROR("DRAM regions not populated correctly.\n");
			break;
		}

		index = populate_tzc400_reg_list(tzc400_reg_list,
				dram_idx, index,
				info_dram_regions->region[dram_idx].addr,
				info_dram_regions->region[dram_idx].size,
				NXP_SECURE_DRAM_SIZE, NXP_SP_SHRD_DRAM_SIZE);
	}

	mem_access_setup(NXP_TZC_ADDR, index, tzc400_reg_list);
}

#else

static unsigned char _power_domain_tree_desc[NUMBER_OF_CLUSTERS + 2];
/*
 * This function dynamically constructs the topology according to
 *  SoC Flavor and returns it.
 */
const unsigned char *plat_get_power_domain_tree_desc(void)
{
	uint8_t num_clusters, cores_per_cluster;
	unsigned int i;

	get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
	/*
	 * The highest level is the system level. The next level is constituted
	 * by clusters and then cores in clusters.
	 */
	_power_domain_tree_desc[0] = 1;
	_power_domain_tree_desc[1] = num_clusters;

	for (i = 0; i < _power_domain_tree_desc[1]; i++)
		_power_domain_tree_desc[i + 2] = cores_per_cluster;

	return _power_domain_tree_desc;
}

/*
 * This function returns the core count within the cluster corresponding to
 * `mpidr`.
 */
unsigned int plat_ls_get_cluster_core_count(u_register_t mpidr)
{
	uint8_t num_clusters, cores_per_cluster;

	get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
	return num_clusters;
}

void soc_early_platform_setup2(void)
{
	dcfg_init(&dcfg_init_data);
	/* Initialize system level generic timer for Socs */
	delay_timer_init(NXP_TIMER_ADDR);

#if LOG_LEVEL > 0
	/* Initialize the console to provide early debug support */
	plat_console_init(NXP_CONSOLE_ADDR,
				NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE);
#endif
}

void soc_platform_setup(void)
{
	/* Initialize the GIC driver, cpu and distributor interfaces */
	static uintptr_t target_mask_array[PLATFORM_CORE_COUNT];
	static interrupt_prop_t ls_interrupt_props[] = {
		PLAT_LS_G1S_IRQ_PROPS(INTR_GROUP1S),
		PLAT_LS_G0_IRQ_PROPS(INTR_GROUP0)
	};

	plat_ls_gic_driver_init(NXP_GICD_ADDR, NXP_GICR_ADDR,
				PLATFORM_CORE_COUNT,
				ls_interrupt_props,
				ARRAY_SIZE(ls_interrupt_props),
				target_mask_array,
				plat_core_pos);

	plat_ls_gic_init();
	enable_init_timer();
}

/* This function initializes the soc from the BL31 module */
void soc_init(void)
{
	uint8_t num_clusters, cores_per_cluster;

	get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);

	/* Low-level init of the soc */
	soc_init_lowlevel();
	_init_global_data();
	soc_init_percpu();
	_initialize_psci();

	/*
	 * Initialize Interconnect for this cluster during cold boot.
	 * No need for locks as no other CPU is active.
	 */
	cci_init(NXP_CCI_ADDR, cci_map, ARRAY_SIZE(cci_map));

	/* Enable Interconnect coherency for the primary CPU's cluster. */
	plat_ls_interconnect_enter_coherency(num_clusters);

	/* Set platform security policies */
	_set_platform_security();

	/* Init SEC Engine which will be used by SiP */
	if (is_sec_enabled()) {
		sec_init(NXP_CAAM_ADDR);
	} else {
		INFO("SEC is disabled.\n");
	}
}

#ifdef NXP_WDOG_RESTART
static uint64_t wdog_interrupt_handler(uint32_t id, uint32_t flags,
					  void *handle, void *cookie)
{
	uint8_t data = WDOG_RESET_FLAG;

	wr_nv_app_data(WDT_RESET_FLAG_OFFSET,
			(uint8_t *)&data, sizeof(data));

	mmio_write_32(NXP_RST_ADDR + RSTCNTL_OFFSET, SW_RST_REQ_INIT);

	return 0;
}
#endif

void soc_runtime_setup(void)
{
#ifdef NXP_WDOG_RESTART
	request_intr_type_el3(BL31_NS_WDOG_WS1, wdog_interrupt_handler);
#endif
}

/* This function returns the total number of cores in the SoC. */
unsigned int get_tot_num_cores(void)
{
	uint8_t num_clusters, cores_per_cluster;

	get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
	return (num_clusters * cores_per_cluster);
}

/* This function returns the PMU IDLE Cluster mask. */
unsigned int get_pmu_idle_cluster_mask(void)
{
	uint8_t num_clusters, cores_per_cluster;

	get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
	return ((1 << num_clusters) - 2);
}

/* This function returns the PMU Flush Cluster mask. */
unsigned int get_pmu_flush_cluster_mask(void)
{
	uint8_t num_clusters, cores_per_cluster;

	get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
	return ((1 << num_clusters) - 2);
}

/* This function returns the PMU idle core mask. */
unsigned int get_pmu_idle_core_mask(void)
{
	return ((1 << get_tot_num_cores()) - 2);
}

/* Function to return the SoC SYS CLK */
unsigned int get_sys_clk(void)
{
	return NXP_SYSCLK_FREQ;
}
#endif