aboutsummaryrefslogtreecommitdiff
path: root/src/arm/linux/cpuinfo.c
blob: 90e1631ee1c0072ed8273dc26267f01e190b8754 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <stddef.h>
#include <string.h>

#include <linux/api.h>
#include <arm/linux/api.h>
#include <arm/midr.h>
#include <cpuinfo/log.h>

/*
 * Size, in chars, of the on-stack buffer used for parsing lines of /proc/cpuinfo.
 * This is also the limit on the length of a single line.
 */
#define BUFFER_SIZE 1024


static uint32_t parse_processor_number(
	const char* processor_start,
	const char* processor_end)
{
	const size_t processor_length = (size_t) (processor_end - processor_start);

	if (processor_length == 0) {
		cpuinfo_log_warning("Processor number in /proc/cpuinfo is ignored: string is empty");
		return 0;
	}

	uint32_t processor_number = 0;
	for (const char* digit_ptr = processor_start; digit_ptr != processor_end; digit_ptr++) {
		const uint32_t digit = (uint32_t) (*digit_ptr - '0');
		if (digit > 10) {
			cpuinfo_log_warning("non-decimal suffix %.*s in /proc/cpuinfo processor number is ignored",
				(int) (processor_end - digit_ptr), digit_ptr);
			break;
		}

		processor_number = processor_number * 10 + digit;
	}

	return processor_number;
}

/*
 *	Full list of ARM features reported in /proc/cpuinfo:
 *
 *	* swp - support for SWP instruction (deprecated in ARMv7, can be removed in future)
 *	* half - support for half-word loads and stores. These instruction are part of ARMv4,
 *	         so no need to check it on supported CPUs.
 *	* thumb - support for 16-bit Thumb instruction set. Note that BX instruction is detected
 *	          by ARMv4T architecture, not by this flag.
 *	* 26bit - old CPUs merged 26-bit PC and program status register (flags) into 32-bit PC
 *	          and had special instructions for working with packed PC. Now it is all deprecated.
 *	* fastmult - most old ARM CPUs could only compute 2 bits of multiplication result per clock
 *	             cycle, but CPUs with M suffix (e.g. ARM7TDMI) could compute 4 bits per cycle.
 *	             Of course, now it makes no sense.
 *	* fpa - floating point accelerator available. On original ARM ABI all floating-point operations
 *	        generated FPA instructions. If FPA was not available, these instructions generated
 *	        "illegal operation" interrupts, and the OS processed them by emulating the FPA instructions.
 *	        Debian used this ABI before it switched to EABI. Now FPA is deprecated.
 *	* vfp - vector floating point instructions. Available on most modern CPUs (as part of VFPv3).
 *	        Required by Android ARMv7A ABI and by Ubuntu on ARM.
 *              Note: there is no flag for VFPv2.
 *	* edsp - V5E instructions: saturating add/sub and 16-bit x 16-bit -> 32/64-bit multiplications.
 *	         Required on Android, supported by all CPUs in production.
 *	* java - Jazelle extension. Supported on most CPUs.
 *	* iwmmxt - Intel/Marvell Wireless MMX instructions. 64-bit integer SIMD.
 *	           Supported on XScale (Since PXA270) and Sheeva (PJ1, PJ4) architectures.
 *	           Note that there is no flag for WMMX2 instructions.
 *	* crunch - Maverick Crunch instructions. Junk.
 *	* thumbee - ThumbEE instructions. Almost no documentation is available.
 *	* neon - NEON instructions (aka Advanced SIMD). MVFR1 register gives more
 *	         fine-grained information on particular supported features, but
 *	         the Linux kernel exports only a single flag for all of them.
 *	         According to ARMv7A docs it also implies the availability of VFPv3
 *	         (with 32 double-precision registers d0-d31).
 *	* vfpv3 - VFPv3 instructions. Available on most modern CPUs. Augment VFPv2 by
 *	          conversion to/from integers and load constant instructions.
 *	          Required by Android ARMv7A ABI and by Ubuntu on ARM.
 *	* vfpv3d16 - VFPv3 instructions with only 16 double-precision registers (d0-d15).
 *	* tls - software thread ID registers.
 *	        Used by kernel (and likely libc) for efficient implementation of TLS.
 *	* vfpv4 - fused multiply-add instructions.
 *	* idiva - DIV instructions available in ARM mode.
 *	* idivt - DIV instructions available in Thumb mode.
 *  * vfpd32 - VFP (of any version) with 32 double-precision registers d0-d31.
 *  * lpae - Large Physical Address Extension (physical address up to 40 bits).
 *  * evtstrm - generation of Event Stream by timer.
 *  * aes - AES instructions.
 *  * pmull - Polinomial Multiplication instructions.
 *  * sha1 - SHA1 instructions.
 *  * sha2 - SHA2 instructions.
 *  * crc32 - CRC32 instructions.
 *
 *	/proc/cpuinfo on ARM is populated in file arch/arm/kernel/setup.c in Linux kernel
 *	Note that some devices may use patched Linux kernels with different feature names.
 *	However, the names above were checked on a large number of /proc/cpuinfo listings.
 */
static void parse_features(
	const char* features_start,
	const char* features_end,
	struct cpuinfo_arm_linux_processor processor[restrict static 1])
{
	const char* feature_start = features_start;
	const char* feature_end;

	/* Mark the features as valid */
	processor->flags |= CPUINFO_ARM_LINUX_VALID_FEATURES | CPUINFO_ARM_LINUX_VALID_PROCESSOR;

	do {
		feature_end = feature_start + 1;
		for (; feature_end != features_end; feature_end++) {
			if (*feature_end == ' ') {
				break;
			}
		}
		const size_t feature_length = (size_t) (feature_end - feature_start);

		switch (feature_length) {
			case 2:
				if (memcmp(feature_start, "fp", feature_length) == 0) {
#if CPUINFO_ARCH_ARM64
					processor->features |= CPUINFO_ARM_LINUX_FEATURE_FP;
#endif
#if CPUINFO_ARCH_ARM
				} else if (memcmp(feature_start, "wp", feature_length) == 0) {
					/*
					 * Some AArch64 kernels, including the one on Nexus 5X,
					 * erroneously report "swp" as "wp" to AArch32 programs
					 */
					processor->features |= CPUINFO_ARM_LINUX_FEATURE_SWP;
#endif
				} else {
					goto unexpected;
				}
				break;
			case 3:
				if (memcmp(feature_start, "aes", feature_length) == 0) {
					#if CPUINFO_ARCH_ARM
						processor->features2 |= CPUINFO_ARM_LINUX_FEATURE2_AES;
					#elif CPUINFO_ARCH_ARM64
						processor->features |= CPUINFO_ARM_LINUX_FEATURE_AES;
					#endif
#if CPUINFO_ARCH_ARM
				} else if (memcmp(feature_start, "swp", feature_length) == 0) {
					processor->features |= CPUINFO_ARM_LINUX_FEATURE_SWP;
				} else if (memcmp(feature_start, "fpa", feature_length) == 0) {
					processor->features |= CPUINFO_ARM_LINUX_FEATURE_FPA;
				} else if (memcmp(feature_start, "vfp", feature_length) == 0) {
					processor->features |= CPUINFO_ARM_LINUX_FEATURE_VFP;
				} else if (memcmp(feature_start, "tls", feature_length) == 0) {
					processor->features |= CPUINFO_ARM_LINUX_FEATURE_TLS;
#endif /* CPUINFO_ARCH_ARM */
				} else {
					goto unexpected;
				}
				break;
			case 4:
				if (memcmp(feature_start, "sha1", feature_length) == 0) {
					#if CPUINFO_ARCH_ARM
						processor->features2 |= CPUINFO_ARM_LINUX_FEATURE2_SHA1;
					#elif CPUINFO_ARCH_ARM64
						processor->features |= CPUINFO_ARM_LINUX_FEATURE_SHA1;
					#endif
				} else if (memcmp(feature_start, "sha2", feature_length) == 0) {
					#if CPUINFO_ARCH_ARM
						processor->features2 |= CPUINFO_ARM_LINUX_FEATURE2_SHA2;
					#elif CPUINFO_ARCH_ARM64
						processor->features |= CPUINFO_ARM_LINUX_FEATURE_SHA2;
					#endif
				} else if (memcmp(feature_start, "fphp", feature_length) == 0) {
					#if CPUINFO_ARCH_ARM64
						processor->features |= CPUINFO_ARM_LINUX_FEATURE_FPHP;
					#endif
				} else if (memcmp(feature_start, "fcma", feature_length) == 0) {
					#if CPUINFO_ARCH_ARM64
						processor->features |= CPUINFO_ARM_LINUX_FEATURE_FCMA;
					#endif
#if CPUINFO_ARCH_ARM
				} else if (memcmp(feature_start, "half", feature_length) == 0) {
					processor->features |= CPUINFO_ARM_LINUX_FEATURE_HALF;
				} else if (memcmp(feature_start, "edsp", feature_length) == 0) {
					processor->features |= CPUINFO_ARM_LINUX_FEATURE_EDSP;
				} else if (memcmp(feature_start, "java", feature_length) == 0) {
					processor->features |= CPUINFO_ARM_LINUX_FEATURE_JAVA;
				} else if (memcmp(feature_start, "neon", feature_length) == 0) {
					processor->features |= CPUINFO_ARM_LINUX_FEATURE_NEON;
				} else if (memcmp(feature_start, "lpae", feature_length) == 0) {
					processor->features |= CPUINFO_ARM_LINUX_FEATURE_LPAE;
				} else if (memcmp(feature_start, "tlsi", feature_length) == 0) {
					/*
					 * Some AArch64 kernels, including the one on Nexus 5X,
					 * erroneously report "tls" as "tlsi" to AArch32 programs
					 */
					processor->features |= CPUINFO_ARM_LINUX_FEATURE_TLS;
#endif /* CPUINFO_ARCH_ARM */
				} else {
					goto unexpected;
				}
				break;
			case 5:
				if (memcmp(feature_start, "pmull", feature_length) == 0) {
					#if CPUINFO_ARCH_ARM
						processor->features2 |= CPUINFO_ARM_LINUX_FEATURE2_PMULL;
					#elif CPUINFO_ARCH_ARM64
						processor->features |= CPUINFO_ARM_LINUX_FEATURE_PMULL;
					#endif
				} else if (memcmp(feature_start, "crc32", feature_length) == 0) {
					#if CPUINFO_ARCH_ARM
						processor->features2 |= CPUINFO_ARM_LINUX_FEATURE2_CRC32;
					#elif CPUINFO_ARCH_ARM64
						processor->features |= CPUINFO_ARM_LINUX_FEATURE_CRC32;
					#endif
				} else if (memcmp(feature_start, "asimd", feature_length) == 0) {
					#if CPUINFO_ARCH_ARM64
						processor->features |= CPUINFO_ARM_LINUX_FEATURE_ASIMD;
					#endif
				} else if (memcmp(feature_start, "cpuid", feature_length) == 0) {
					#if CPUINFO_ARCH_ARM64
						processor->features |= CPUINFO_ARM_LINUX_FEATURE_CPUID;
					#endif
				} else if (memcmp(feature_start, "jscvt", feature_length) == 0) {
					#if CPUINFO_ARCH_ARM64
						processor->features |= CPUINFO_ARM_LINUX_FEATURE_JSCVT;
					#endif
				} else if (memcmp(feature_start, "lrcpc", feature_length) == 0) {
					#if CPUINFO_ARCH_ARM64
						processor->features |= CPUINFO_ARM_LINUX_FEATURE_LRCPC;
					#endif
#if CPUINFO_ARCH_ARM
				} else if (memcmp(feature_start, "thumb", feature_length) == 0) {
					processor->features |= CPUINFO_ARM_LINUX_FEATURE_THUMB;
				} else if (memcmp(feature_start, "26bit", feature_length) == 0) {
					processor->features |= CPUINFO_ARM_LINUX_FEATURE_26BIT;
				} else if (memcmp(feature_start, "vfpv3", feature_length) == 0) {
					processor->features |= CPUINFO_ARM_LINUX_FEATURE_VFPV3;
				} else if (memcmp(feature_start, "vfpv4", feature_length) == 0) {
					processor->features |= CPUINFO_ARM_LINUX_FEATURE_VFPV4;
				} else if (memcmp(feature_start, "idiva", feature_length) == 0) {
					processor->features |= CPUINFO_ARM_LINUX_FEATURE_IDIVA;
				} else if (memcmp(feature_start, "idivt", feature_length) == 0) {
					processor->features |= CPUINFO_ARM_LINUX_FEATURE_IDIVT;
#endif /* CPUINFO_ARCH_ARM */
				} else {
					goto unexpected;
				}
 				break;
#if CPUINFO_ARCH_ARM
			case 6:
				if (memcmp(feature_start, "iwmmxt", feature_length) == 0) {
					processor->features |= CPUINFO_ARM_LINUX_FEATURE_IWMMXT;
				} else if (memcmp(feature_start, "crunch", feature_length) == 0) {
					processor->features |= CPUINFO_ARM_LINUX_FEATURE_CRUNCH;
				} else if (memcmp(feature_start, "vfpd32", feature_length) == 0) {
					processor->features |= CPUINFO_ARM_LINUX_FEATURE_VFPD32;
				} else {
					goto unexpected;
				}
				break;
#endif /* CPUINFO_ARCH_ARM */
			case 7:
				if (memcmp(feature_start, "evtstrm", feature_length) == 0) {
					processor->features |= CPUINFO_ARM_LINUX_FEATURE_EVTSTRM;
				} else if (memcmp(feature_start, "atomics", feature_length) == 0) {
					#if CPUINFO_ARCH_ARM64
						processor->features |= CPUINFO_ARM_LINUX_FEATURE_ATOMICS;
					#endif
				} else if (memcmp(feature_start, "asimdhp", feature_length) == 0) {
					#if CPUINFO_ARCH_ARM64
						processor->features |= CPUINFO_ARM_LINUX_FEATURE_ASIMDHP;
					#endif
#if CPUINFO_ARCH_ARM
				} else if (memcmp(feature_start, "thumbee", feature_length) == 0) {
					processor->features |= CPUINFO_ARM_LINUX_FEATURE_THUMBEE;
#endif /* CPUINFO_ARCH_ARM */
				} else {
					goto unexpected;
				}
				break;
			case 8:
				if (memcmp(feature_start, "asimdrdm", feature_length) == 0) {
					#if CPUINFO_ARCH_ARM64
						processor->features |= CPUINFO_ARM_LINUX_FEATURE_ASIMDRDM;
					#endif
#if CPUINFO_ARCH_ARM
				} else if (memcmp(feature_start, "fastmult", feature_length) == 0) {
					processor->features |= CPUINFO_ARM_LINUX_FEATURE_FASTMULT;
				} else if (memcmp(feature_start, "vfpv3d16", feature_length) == 0) {
					processor->features |= CPUINFO_ARM_LINUX_FEATURE_VFPV3D16;
#endif /* CPUINFO_ARCH_ARM */
				} else {
					goto unexpected;
				}
				break;
			default:
			unexpected:
				cpuinfo_log_warning("unexpected /proc/cpuinfo feature \"%.*s\" is ignored",
					(int) feature_length, feature_start);
				break;
		}
		feature_start = feature_end;
		for (; feature_start != features_end; feature_start++) {
			if (*feature_start != ' ') {
				break;
			}
		}
	} while (feature_start != feature_end);
}

static void parse_cpu_architecture(
	const char* cpu_architecture_start,
	const char* cpu_architecture_end,
	struct cpuinfo_arm_linux_processor processor[restrict static 1])
{
	const size_t cpu_architecture_length = (size_t) (cpu_architecture_end - cpu_architecture_start);
	/* Early AArch64 kernels report "CPU architecture: AArch64" instead of a numeric value 8 */
	if (cpu_architecture_length == 7) {
		if (memcmp(cpu_architecture_start, "AArch64", cpu_architecture_length) == 0) {
			processor->midr = midr_set_architecture(processor->midr, UINT32_C(0xF));
			processor->architecture_version = 8;
			processor->flags |= CPUINFO_ARM_LINUX_VALID_ARCHITECTURE | CPUINFO_ARM_LINUX_VALID_PROCESSOR;
			return;
		}
	}


	uint32_t architecture = 0;
	const char* cpu_architecture_ptr = cpu_architecture_start;
	for (; cpu_architecture_ptr != cpu_architecture_end; cpu_architecture_ptr++) {
		const uint32_t digit = (*cpu_architecture_ptr) - '0';

		/* Verify that CPU architecture is a decimal number */
		if (digit >= 10) {
			break;
		}

		architecture = architecture * 10 + digit;
	}

	if (cpu_architecture_ptr == cpu_architecture_start) {
		cpuinfo_log_warning("CPU architecture %.*s in /proc/cpuinfo is ignored due to non-digit at the beginning of the string",
			(int) cpu_architecture_length, cpu_architecture_start);
	} else {
		if (architecture != 0) {
			processor->architecture_version = architecture;
			processor->flags |= CPUINFO_ARM_LINUX_VALID_ARCHITECTURE | CPUINFO_ARM_LINUX_VALID_PROCESSOR;

			for (; cpu_architecture_ptr != cpu_architecture_end; cpu_architecture_ptr++) {
				const char feature = *cpu_architecture_ptr;
				switch (feature) {
#if CPUINFO_ARCH_ARM
					case 'T':
						processor->architecture_flags |= CPUINFO_ARM_LINUX_ARCH_T;
						break;
					case 'E':
						processor->architecture_flags |= CPUINFO_ARM_LINUX_ARCH_E;
						break;
					case 'J':
						processor->architecture_flags |= CPUINFO_ARM_LINUX_ARCH_J;
						break;
#endif /* CPUINFO_ARCH_ARM */
					case ' ':
					case '\t':
						/* Ignore whitespace at the end */
						break;
					default:
						cpuinfo_log_warning("skipped unknown architectural feature '%c' for ARMv%"PRIu32,
							feature, architecture);
						break;
				}
			}
		} else {
			cpuinfo_log_warning("CPU architecture %.*s in /proc/cpuinfo is ignored due to invalid value (0)",
				(int) cpu_architecture_length, cpu_architecture_start);
		}
	}

	uint32_t midr_architecture = UINT32_C(0xF);
#if CPUINFO_ARCH_ARM
	switch (processor->architecture_version) {
		case 6:
			midr_architecture = UINT32_C(0x7); /* ARMv6 */
			break;
		case 5:
			if ((processor->architecture_flags & CPUINFO_ARM_LINUX_ARCH_TEJ) == CPUINFO_ARM_LINUX_ARCH_TEJ) {
				midr_architecture = UINT32_C(0x6); /* ARMv5TEJ */
			} else if ((processor->architecture_flags & CPUINFO_ARM_LINUX_ARCH_TE) == CPUINFO_ARM_LINUX_ARCH_TE) {
				midr_architecture = UINT32_C(0x5); /* ARMv5TE */
			} else {
				midr_architecture = UINT32_C(0x4); /* ARMv5T */
			}
			break;
	}
#endif
	processor->midr = midr_set_architecture(processor->midr, midr_architecture);
}

static void parse_cpu_part(
	const char* cpu_part_start,
	const char* cpu_part_end,
	struct cpuinfo_arm_linux_processor processor[restrict static 1])
{
	const size_t cpu_part_length = (size_t) (cpu_part_end - cpu_part_start);

	/*
	 * CPU part should contain hex prefix (0x) and one to three hex digits.
	 * I have never seen less than three digits as a value of this field,
	 * but I don't think it is impossible to see such values in future.
	 * Value can not contain more than three hex digits since
	 * Main ID Register (MIDR) assigns only a 12-bit value for CPU part.
	 */
	if (cpu_part_length < 3 || cpu_part_length > 5) {
		cpuinfo_log_warning("CPU part %.*s in /proc/cpuinfo is ignored due to unexpected length (%zu)",
			(int) cpu_part_length, cpu_part_start, cpu_part_length);
		return;
	}

	/* Verify the presence of hex prefix */
	if (cpu_part_start[0] != '0' || cpu_part_start[1] != 'x') {
		cpuinfo_log_warning("CPU part %.*s in /proc/cpuinfo is ignored due to lack of 0x prefix",
			(int) cpu_part_length, cpu_part_start);
		return;
	}

	/* Verify that characters after hex prefix are hexadecimal digits and decode them */
	uint32_t cpu_part = 0;
	for (const char* digit_ptr = cpu_part_start + 2; digit_ptr != cpu_part_end; digit_ptr++) {
		const char digit_char = *digit_ptr;
		uint32_t digit;
		if (digit_char >= '0' && digit_char <= '9') {
			digit = digit_char - '0';
		} else if ((uint32_t) (digit_char - 'A') < 6) {
			digit = 10 + (digit_char - 'A');
		} else if ((uint32_t) (digit_char - 'a') < 6) {
			digit = 10 + (digit_char - 'a');
		} else {
			cpuinfo_log_warning("CPU part %.*s in /proc/cpuinfo is ignored due to unexpected non-hex character %c at offset %zu",
				(int) cpu_part_length, cpu_part_start, digit_char, (size_t) (digit_ptr - cpu_part_start));
			return;
		}
		cpu_part = cpu_part * 16 + digit;
	}

	processor->midr = midr_set_part(processor->midr, cpu_part);
	processor->flags |= CPUINFO_ARM_LINUX_VALID_PART | CPUINFO_ARM_LINUX_VALID_PROCESSOR;
}

static void parse_cpu_implementer(
	const char* cpu_implementer_start,
	const char* cpu_implementer_end,
	struct cpuinfo_arm_linux_processor processor[restrict static 1])
{
	const size_t cpu_implementer_length = cpu_implementer_end - cpu_implementer_start;

	/*
	 * Value should contain hex prefix (0x) and one or two hex digits.
	 * I have never seen single hex digit as a value of this field,
	 * but I don't think it is impossible in future.
	 * Value can not contain more than two hex digits since
	 * Main ID Register (MIDR) assigns only an 8-bit value for CPU implementer.
	 */
	switch (cpu_implementer_length) {
		case 3:
		case 4:
			break;
		default:
		cpuinfo_log_warning("CPU implementer %.*s in /proc/cpuinfo is ignored due to unexpected length (%zu)",
			(int) cpu_implementer_length, cpu_implementer_start, cpu_implementer_length);
		return;
	}

	/* Verify the presence of hex prefix */
	if (cpu_implementer_start[0] != '0' || cpu_implementer_start[1] != 'x') {
		cpuinfo_log_warning("CPU implementer %.*s in /proc/cpuinfo is ignored due to lack of 0x prefix",
			(int) cpu_implementer_length, cpu_implementer_start);
		return;
	}

	/* Verify that characters after hex prefix are hexadecimal digits and decode them */
	uint32_t cpu_implementer = 0;
	for (const char* digit_ptr = cpu_implementer_start + 2; digit_ptr != cpu_implementer_end; digit_ptr++) {
		const char digit_char = *digit_ptr;
		uint32_t digit;
		if (digit_char >= '0' && digit_char <= '9') {
			digit = digit_char - '0';
		} else if ((uint32_t) (digit_char - 'A') < 6) {
			digit = 10 + (digit_char - 'A');
		} else if ((uint32_t) (digit_char - 'a') < 6) {
			digit = 10 + (digit_char - 'a');
		} else {
			cpuinfo_log_warning("CPU implementer %.*s in /proc/cpuinfo is ignored due to unexpected non-hex character '%c' at offset %zu",
				(int) cpu_implementer_length, cpu_implementer_start, digit_char, (size_t) (digit_ptr - cpu_implementer_start));
			return;
		}
		cpu_implementer = cpu_implementer * 16 + digit;
	}

	processor->midr = midr_set_implementer(processor->midr, cpu_implementer);
	processor->flags |= CPUINFO_ARM_LINUX_VALID_IMPLEMENTER | CPUINFO_ARM_LINUX_VALID_PROCESSOR;
}

static void parse_cpu_variant(
	const char* cpu_variant_start,
	const char* cpu_variant_end,
	struct cpuinfo_arm_linux_processor processor[restrict static 1])
{
	const size_t cpu_variant_length = cpu_variant_end - cpu_variant_start;

	/*
	 * Value should contain hex prefix (0x) and one hex digit.
	 * Value can not contain more than one hex digits since
	 * Main ID Register (MIDR) assigns only a 4-bit value for CPU variant.
	 */
	if (cpu_variant_length != 3) {
		cpuinfo_log_warning("CPU variant %.*s in /proc/cpuinfo is ignored due to unexpected length (%zu)",
			(int) cpu_variant_length, cpu_variant_start, cpu_variant_length);
		return;
	}

	/* Skip if there is no hex prefix (0x) */
	if (cpu_variant_start[0] != '0' || cpu_variant_start[1] != 'x') {
		cpuinfo_log_warning("CPU variant %.*s in /proc/cpuinfo is ignored due to lack of 0x prefix",
			(int) cpu_variant_length, cpu_variant_start);
		return;
	}

	/* Check if the value after hex prefix is indeed a hex digit and decode it. */
	const char digit_char = cpu_variant_start[2];
	uint32_t cpu_variant;
	if ((uint32_t) (digit_char - '0') < 10) {
		cpu_variant = (uint32_t) (digit_char - '0');
	} else if ((uint32_t) (digit_char - 'A') < 6) {
		cpu_variant = 10 + (uint32_t) (digit_char - 'A');
	} else if ((uint32_t) (digit_char - 'a') < 6) {
		cpu_variant = 10 + (uint32_t) (digit_char - 'a');
	} else {
		cpuinfo_log_warning("CPU variant %.*s in /proc/cpuinfo is ignored due to unexpected non-hex character '%c'",
			(int) cpu_variant_length, cpu_variant_start, digit_char);
		return;
	}

	processor->midr = midr_set_variant(processor->midr, cpu_variant);
	processor->flags |= CPUINFO_ARM_LINUX_VALID_VARIANT | CPUINFO_ARM_LINUX_VALID_PROCESSOR;
}

static void parse_cpu_revision(
	const char* cpu_revision_start,
	const char* cpu_revision_end,
	struct cpuinfo_arm_linux_processor processor[restrict static 1])
{
	uint32_t cpu_revision = 0;
	for (const char* digit_ptr = cpu_revision_start; digit_ptr != cpu_revision_end; digit_ptr++) {
		const uint32_t digit = (uint32_t) (*digit_ptr - '0');

		/* Verify that the character in CPU revision is a decimal digit */
		if (digit >= 10) {
			cpuinfo_log_warning("CPU revision %.*s in /proc/cpuinfo is ignored due to unexpected non-digit character '%c' at offset %zu",
				(int) (cpu_revision_end - cpu_revision_start), cpu_revision_start,
				*digit_ptr, (size_t) (digit_ptr - cpu_revision_start));
			return;
		}

		cpu_revision = cpu_revision * 10 + digit;
	}

	processor->midr = midr_set_revision(processor->midr, cpu_revision);
	processor->flags |= CPUINFO_ARM_LINUX_VALID_REVISION | CPUINFO_ARM_LINUX_VALID_PROCESSOR;
}

#if CPUINFO_ARCH_ARM
/*
 * Decode one of the cache-related numbers reported by Linux kernel
 * for pre-ARMv7 architecture.
 * An example cache-related information in /proc/cpuinfo:
 *
 *      I size          : 32768
 *      I assoc         : 4
 *      I line length   : 32
 *      I sets          : 256
 *      D size          : 16384
 *      D assoc         : 4
 *      D line length   : 32
 *      D sets          : 128
 *
 */
static void parse_cache_number(
	const char* number_start,
	const char* number_end,
	const char* number_name,
	uint32_t number_ptr[restrict static 1],
	uint32_t flags[restrict static 1],
	uint32_t number_mask)
{
	uint32_t number = 0;
	for (const char* digit_ptr = number_start; digit_ptr != number_end; digit_ptr++) {
		const uint32_t digit = *digit_ptr - '0';
		if (digit >= 10) {
			cpuinfo_log_warning("%s %.*s in /proc/cpuinfo is ignored due to unexpected non-digit character '%c' at offset %zu",
				number_name, (int) (number_end - number_start), number_start,
				*digit_ptr, (size_t) (digit_ptr - number_start));
			return;
		}

		number = number * 10 + digit;
	}

	if (number == 0) {
		cpuinfo_log_warning("%s %.*s in /proc/cpuinfo is ignored due to invalid value of zero reported by the kernel",
			number_name, (int) (number_end - number_start), number_start);
	}

	/* If the number specifies a cache line size, verify that is a reasonable power of 2 */
	if (number_mask & CPUINFO_ARM_LINUX_VALID_CACHE_LINE) {
		switch (number) {
			case 16:
			case 32:
			case 64:
			case 128:
				break;
			default:
				cpuinfo_log_warning("invalid %s %.*s is ignored: a value of 16, 32, 64, or 128 expected",
					number_name, (int) (number_end - number_start), number_start);
		}
	}

	*number_ptr = number;
	*flags |= number_mask | CPUINFO_ARM_LINUX_VALID_PROCESSOR;
}
#endif /* CPUINFO_ARCH_ARM */

struct proc_cpuinfo_parser_state {
	char* hardware;
	char* revision;
	uint32_t processor_index;
	uint32_t max_processors_count;
	struct cpuinfo_arm_linux_processor* processors;
	struct cpuinfo_arm_linux_processor dummy_processor;
};

/*
 *	Decode a single line of /proc/cpuinfo information.
 *	Lines have format <words-with-spaces>[ ]*:[ ]<space-separated words>
 *	An example of /proc/cpuinfo (from Pandaboard-ES):
 *
 *		Processor       : ARMv7 Processor rev 10 (v7l)
 *		processor       : 0
 *		BogoMIPS        : 1392.74
 *
 *		processor       : 1
 *		BogoMIPS        : 1363.33
 *
 *		Features        : swp half thumb fastmult vfp edsp thumbee neon vfpv3
 *		CPU implementer : 0x41
 *		CPU architecture: 7
 *		CPU variant     : 0x2
 *		CPU part        : 0xc09
 *		CPU revision    : 10
 *
 *		Hardware        : OMAP4 Panda board
 *		Revision        : 0020
 *		Serial          : 0000000000000000
 */
static bool parse_line(
	const char* line_start,
	const char* line_end,
	struct proc_cpuinfo_parser_state state[restrict static 1],
	uint64_t line_number)
{
	/* Empty line. Skip. */
	if (line_start == line_end) {
		return true;
	}

	/* Search for ':' on the line. */
	const char* separator = line_start;
	for (; separator != line_end; separator++) {
		if (*separator == ':') {
			break;
		}
	}
	/* Skip line if no ':' separator was found. */
	if (separator == line_end) {
		cpuinfo_log_info("Line %.*s in /proc/cpuinfo is ignored: key/value separator ':' not found",
			(int) (line_end - line_start), line_start);
		return true;
	}

	/* Skip trailing spaces in key part. */
	const char* key_end = separator;
	for (; key_end != line_start; key_end--) {
		if (key_end[-1] != ' ' && key_end[-1] != '\t') {
			break;
		}
	}
	/* Skip line if key contains nothing but spaces. */
	if (key_end == line_start) {
		cpuinfo_log_info("Line %.*s in /proc/cpuinfo is ignored: key contains only spaces",
			(int) (line_end - line_start), line_start);
		return true;
	}

	/* Skip leading spaces in value part. */
	const char* value_start = separator + 1;
	for (; value_start != line_end; value_start++) {
		if (*value_start != ' ') {
			break;
		}
	}
	/* Value part contains nothing but spaces. Skip line. */
	if (value_start == line_end) {
		cpuinfo_log_info("Line %.*s in /proc/cpuinfo is ignored: value contains only spaces",
			(int) (line_end - line_start), line_start);
		return true;
	}

	/* Skip trailing spaces in value part (if any) */
	const char* value_end = line_end;
	for (; value_end != value_start; value_end--) {
		if (value_end[-1] != ' ') {
			break;
		}
	}

	const uint32_t processor_index      = state->processor_index;
	const uint32_t max_processors_count = state->max_processors_count;
	struct cpuinfo_arm_linux_processor* processors = state->processors;
	struct cpuinfo_arm_linux_processor* processor  = &state->dummy_processor;
	if (processor_index < max_processors_count) {
		processor = &processors[processor_index];
	}

	const size_t key_length = key_end - line_start;
	switch (key_length) {
		case 6:
			if (memcmp(line_start, "Serial", key_length) == 0) {
				/* Usually contains just zeros, useless */
#if CPUINFO_ARCH_ARM
			} else if (memcmp(line_start, "I size", key_length) == 0) {
				parse_cache_number(value_start, value_end,
					"instruction cache size", &processor->proc_cpuinfo_cache.i_size,
					&processor->flags, CPUINFO_ARM_LINUX_VALID_ICACHE_SIZE);
			} else if (memcmp(line_start, "I sets", key_length) == 0) {
				parse_cache_number(value_start, value_end,
					"instruction cache sets", &processor->proc_cpuinfo_cache.i_sets,
					&processor->flags, CPUINFO_ARM_LINUX_VALID_ICACHE_SETS);
			} else if (memcmp(line_start, "D size", key_length) == 0) {
				parse_cache_number(value_start, value_end,
					"data cache size", &processor->proc_cpuinfo_cache.d_size,
					&processor->flags, CPUINFO_ARM_LINUX_VALID_DCACHE_SIZE);
			} else if (memcmp(line_start, "D sets", key_length) == 0) {
				parse_cache_number(value_start, value_end,
					"data cache sets", &processor->proc_cpuinfo_cache.d_sets,
					&processor->flags, CPUINFO_ARM_LINUX_VALID_DCACHE_SETS);
#endif /* CPUINFO_ARCH_ARM */
			} else {
				goto unknown;
			}
			break;
#if CPUINFO_ARCH_ARM
		case 7:
			if (memcmp(line_start, "I assoc", key_length) == 0) {
				parse_cache_number(value_start, value_end,
					"instruction cache associativity", &processor->proc_cpuinfo_cache.i_assoc,
					&processor->flags, CPUINFO_ARM_LINUX_VALID_ICACHE_WAYS);
			} else if (memcmp(line_start, "D assoc", key_length) == 0) {
				parse_cache_number(value_start, value_end,
					"data cache associativity", &processor->proc_cpuinfo_cache.d_assoc,
					&processor->flags, CPUINFO_ARM_LINUX_VALID_DCACHE_WAYS);
			} else {
				goto unknown;
			}
			break;
#endif /* CPUINFO_ARCH_ARM */
		case 8:
			if (memcmp(line_start, "CPU part", key_length) == 0) {
				parse_cpu_part(value_start, value_end, processor);
			} else if (memcmp(line_start, "Features", key_length) == 0) {
				parse_features(value_start, value_end, processor);
			} else if (memcmp(line_start, "BogoMIPS", key_length) == 0) {
				/* BogoMIPS is useless, don't parse */
			} else if (memcmp(line_start, "Hardware", key_length) == 0) {
				size_t value_length = value_end - value_start;
				if (value_length > CPUINFO_HARDWARE_VALUE_MAX) {
					cpuinfo_log_info(
						"length of Hardware value \"%.*s\" in /proc/cpuinfo exceeds limit (%d): truncating to the limit",
						(int) value_length, value_start, CPUINFO_HARDWARE_VALUE_MAX);
					value_length = CPUINFO_HARDWARE_VALUE_MAX;
				} else {
					state->hardware[value_length] = '\0';
				}
				memcpy(state->hardware, value_start, value_length);
				cpuinfo_log_debug("parsed /proc/cpuinfo Hardware = \"%.*s\"", (int) value_length, value_start);
			} else if (memcmp(line_start, "Revision", key_length) == 0) {
				size_t value_length = value_end - value_start;
				if (value_length > CPUINFO_REVISION_VALUE_MAX) {
					cpuinfo_log_info(
						"length of Revision value \"%.*s\" in /proc/cpuinfo exceeds limit (%d): truncating to the limit",
						(int) value_length, value_start, CPUINFO_REVISION_VALUE_MAX);
					value_length = CPUINFO_REVISION_VALUE_MAX;
				} else {
					state->revision[value_length] = '\0';
				}
				memcpy(state->revision, value_start, value_length);
				cpuinfo_log_debug("parsed /proc/cpuinfo Revision = \"%.*s\"", (int) value_length, value_start);
			} else {
				goto unknown;
			}
			break;
		case 9:
			if (memcmp(line_start, "processor", key_length) == 0) {
				const uint32_t new_processor_index = parse_processor_number(value_start, value_end);
				if (new_processor_index < processor_index) {
					/* Strange: decreasing processor number */
					cpuinfo_log_warning(
						"unexpectedly low processor number %"PRIu32" following processor %"PRIu32" in /proc/cpuinfo",
						new_processor_index, processor_index);
				} else if (new_processor_index > processor_index + 1) {
					/* Strange, but common: skipped processor $(processor_index + 1) */
					cpuinfo_log_info(
						"unexpectedly high processor number %"PRIu32" following processor %"PRIu32" in /proc/cpuinfo",
						new_processor_index, processor_index);
				}
				if (new_processor_index < max_processors_count) {
					/* Record that the processor was mentioned in /proc/cpuinfo */
					processors[new_processor_index].flags |= CPUINFO_ARM_LINUX_VALID_PROCESSOR;
				} else {
					/* Log and ignore processor */
					cpuinfo_log_warning("processor %"PRIu32" in /proc/cpuinfo is ignored: index exceeds system limit %"PRIu32,
						new_processor_index, max_processors_count - 1);
				}
				state->processor_index = new_processor_index;
				return true;
			} else if (memcmp(line_start, "Processor", key_length) == 0) {
				/* TODO: parse to fix misreported architecture, similar to Android's cpufeatures */
			} else {
				goto unknown;
			}
			break;
		case 11:
			if (memcmp(line_start, "CPU variant", key_length) == 0) {
				parse_cpu_variant(value_start, value_end, processor);
			} else {
				goto unknown;
			}
			break;
		case 12:
			if (memcmp(line_start, "CPU revision", key_length) == 0) {
				parse_cpu_revision(value_start, value_end, processor);
			} else {
				goto unknown;
			}
			break;
#if CPUINFO_ARCH_ARM
		case 13:
			if (memcmp(line_start, "I line length", key_length) == 0) {
				parse_cache_number(value_start, value_end,
					"instruction cache line size", &processor->proc_cpuinfo_cache.i_line_length,
					&processor->flags, CPUINFO_ARM_LINUX_VALID_ICACHE_LINE);
			} else if (memcmp(line_start, "D line length", key_length) == 0) {
				parse_cache_number(value_start, value_end,
					"data cache line size", &processor->proc_cpuinfo_cache.d_line_length,
					&processor->flags, CPUINFO_ARM_LINUX_VALID_DCACHE_LINE);
			} else {
				goto unknown;
			}
			break;
#endif /* CPUINFO_ARCH_ARM */
		case 15:
			if (memcmp(line_start, "CPU implementer", key_length) == 0) {
				parse_cpu_implementer(value_start, value_end, processor);
			} else if (memcmp(line_start, "CPU implementor", key_length) == 0) {
				parse_cpu_implementer(value_start, value_end, processor);
			} else {
				goto unknown;
			}
			break;
		case 16:
			if (memcmp(line_start, "CPU architecture", key_length) == 0) {
				parse_cpu_architecture(value_start, value_end, processor);
			} else {
				goto unknown;
			}
			break;
		default:
		unknown:
			cpuinfo_log_debug("unknown /proc/cpuinfo key: %.*s", (int) key_length, line_start);

	}
	return true;
}

bool cpuinfo_arm_linux_parse_proc_cpuinfo(
	char hardware[restrict static CPUINFO_HARDWARE_VALUE_MAX],
	char revision[restrict static CPUINFO_REVISION_VALUE_MAX],
	uint32_t max_processors_count,
	struct cpuinfo_arm_linux_processor processors[restrict static max_processors_count])
{
	struct proc_cpuinfo_parser_state state = {
		.hardware = hardware,
		.revision = revision,
		.processor_index = 0,
		.max_processors_count = max_processors_count,
		.processors = processors,
	};
	return cpuinfo_linux_parse_multiline_file("/proc/cpuinfo", BUFFER_SIZE,
		(cpuinfo_line_callback) parse_line, &state);
}