/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "utils.h" #if defined(__BIONIC__) #include "SignalUtils.h" #include "dlext_private.h" #include "platform/bionic/malloc.h" #include "platform/bionic/mte.h" #include "platform/bionic/reserved_signals.h" #include "private/bionic_config.h" #define HAVE_REALLOCARRAY 1 #elif defined(__GLIBC__) #define HAVE_REALLOCARRAY __GLIBC_PREREQ(2, 26) #elif defined(ANDROID_HOST_MUSL) #define HAVE_REALLOCARRAY 1 #endif TEST(malloc, malloc_std) { // Simple malloc test. void *ptr = malloc(100); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(100U, malloc_usable_size(ptr)); free(ptr); } TEST(malloc, malloc_overflow) { SKIP_WITH_HWASAN; errno = 0; ASSERT_EQ(nullptr, malloc(SIZE_MAX)); ASSERT_ERRNO(ENOMEM); } TEST(malloc, calloc_std) { // Simple calloc test. size_t alloc_len = 100; char *ptr = (char *)calloc(1, alloc_len); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(alloc_len, malloc_usable_size(ptr)); for (size_t i = 0; i < alloc_len; i++) { ASSERT_EQ(0, ptr[i]); } free(ptr); } TEST(malloc, calloc_mem_init_disabled) { #if defined(__BIONIC__) // calloc should still zero memory if mem-init is disabled. // With jemalloc the mallopts will fail but that shouldn't affect the // execution of the test. mallopt(M_THREAD_DISABLE_MEM_INIT, 1); size_t alloc_len = 100; char *ptr = reinterpret_cast(calloc(1, alloc_len)); for (size_t i = 0; i < alloc_len; i++) { ASSERT_EQ(0, ptr[i]); } free(ptr); mallopt(M_THREAD_DISABLE_MEM_INIT, 0); #else GTEST_SKIP() << "bionic-only test"; #endif } TEST(malloc, calloc_illegal) { SKIP_WITH_HWASAN; errno = 0; ASSERT_EQ(nullptr, calloc(-1, 100)); ASSERT_ERRNO(ENOMEM); } TEST(malloc, calloc_overflow) { SKIP_WITH_HWASAN; errno = 0; ASSERT_EQ(nullptr, calloc(1, SIZE_MAX)); ASSERT_ERRNO(ENOMEM); errno = 0; ASSERT_EQ(nullptr, calloc(SIZE_MAX, SIZE_MAX)); ASSERT_ERRNO(ENOMEM); errno = 0; ASSERT_EQ(nullptr, calloc(2, SIZE_MAX)); ASSERT_ERRNO(ENOMEM); errno = 0; ASSERT_EQ(nullptr, calloc(SIZE_MAX, 2)); ASSERT_ERRNO(ENOMEM); } TEST(malloc, memalign_multiple) { SKIP_WITH_HWASAN << "hwasan requires power of 2 alignment"; // Memalign test where the alignment is any value. for (size_t i = 0; i <= 12; i++) { for (size_t alignment = 1 << i; alignment < (1U << (i+1)); alignment++) { char *ptr = reinterpret_cast(memalign(alignment, 100)); ASSERT_TRUE(ptr != nullptr) << "Failed at alignment " << alignment; ASSERT_LE(100U, malloc_usable_size(ptr)) << "Failed at alignment " << alignment; ASSERT_EQ(0U, reinterpret_cast(ptr) % ((1U << i))) << "Failed at alignment " << alignment; free(ptr); } } } TEST(malloc, memalign_overflow) { SKIP_WITH_HWASAN; ASSERT_EQ(nullptr, memalign(4096, SIZE_MAX)); } TEST(malloc, memalign_non_power2) { SKIP_WITH_HWASAN; void* ptr; for (size_t align = 0; align <= 256; align++) { ptr = memalign(align, 1024); ASSERT_TRUE(ptr != nullptr) << "Failed at align " << align; free(ptr); } } TEST(malloc, memalign_realloc) { // Memalign and then realloc the pointer a couple of times. for (size_t alignment = 1; alignment <= 4096; alignment <<= 1) { char *ptr = (char*)memalign(alignment, 100); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(100U, malloc_usable_size(ptr)); ASSERT_EQ(0U, (intptr_t)ptr % alignment); memset(ptr, 0x23, 100); ptr = (char*)realloc(ptr, 200); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(200U, malloc_usable_size(ptr)); ASSERT_TRUE(ptr != nullptr); for (size_t i = 0; i < 100; i++) { ASSERT_EQ(0x23, ptr[i]); } memset(ptr, 0x45, 200); ptr = (char*)realloc(ptr, 300); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(300U, malloc_usable_size(ptr)); for (size_t i = 0; i < 200; i++) { ASSERT_EQ(0x45, ptr[i]); } memset(ptr, 0x67, 300); ptr = (char*)realloc(ptr, 250); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(250U, malloc_usable_size(ptr)); for (size_t i = 0; i < 250; i++) { ASSERT_EQ(0x67, ptr[i]); } free(ptr); } } TEST(malloc, malloc_realloc_larger) { // Realloc to a larger size, malloc is used for the original allocation. char *ptr = (char *)malloc(100); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(100U, malloc_usable_size(ptr)); memset(ptr, 67, 100); ptr = (char *)realloc(ptr, 200); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(200U, malloc_usable_size(ptr)); for (size_t i = 0; i < 100; i++) { ASSERT_EQ(67, ptr[i]); } free(ptr); } TEST(malloc, malloc_realloc_smaller) { // Realloc to a smaller size, malloc is used for the original allocation. char *ptr = (char *)malloc(200); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(200U, malloc_usable_size(ptr)); memset(ptr, 67, 200); ptr = (char *)realloc(ptr, 100); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(100U, malloc_usable_size(ptr)); for (size_t i = 0; i < 100; i++) { ASSERT_EQ(67, ptr[i]); } free(ptr); } TEST(malloc, malloc_multiple_realloc) { // Multiple reallocs, malloc is used for the original allocation. char *ptr = (char *)malloc(200); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(200U, malloc_usable_size(ptr)); memset(ptr, 0x23, 200); ptr = (char *)realloc(ptr, 100); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(100U, malloc_usable_size(ptr)); for (size_t i = 0; i < 100; i++) { ASSERT_EQ(0x23, ptr[i]); } ptr = (char*)realloc(ptr, 50); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(50U, malloc_usable_size(ptr)); for (size_t i = 0; i < 50; i++) { ASSERT_EQ(0x23, ptr[i]); } ptr = (char*)realloc(ptr, 150); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(150U, malloc_usable_size(ptr)); for (size_t i = 0; i < 50; i++) { ASSERT_EQ(0x23, ptr[i]); } memset(ptr, 0x23, 150); ptr = (char*)realloc(ptr, 425); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(425U, malloc_usable_size(ptr)); for (size_t i = 0; i < 150; i++) { ASSERT_EQ(0x23, ptr[i]); } free(ptr); } TEST(malloc, calloc_realloc_larger) { // Realloc to a larger size, calloc is used for the original allocation. char *ptr = (char *)calloc(1, 100); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(100U, malloc_usable_size(ptr)); ptr = (char *)realloc(ptr, 200); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(200U, malloc_usable_size(ptr)); for (size_t i = 0; i < 100; i++) { ASSERT_EQ(0, ptr[i]); } free(ptr); } TEST(malloc, calloc_realloc_smaller) { // Realloc to a smaller size, calloc is used for the original allocation. char *ptr = (char *)calloc(1, 200); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(200U, malloc_usable_size(ptr)); ptr = (char *)realloc(ptr, 100); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(100U, malloc_usable_size(ptr)); for (size_t i = 0; i < 100; i++) { ASSERT_EQ(0, ptr[i]); } free(ptr); } TEST(malloc, calloc_multiple_realloc) { // Multiple reallocs, calloc is used for the original allocation. char *ptr = (char *)calloc(1, 200); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(200U, malloc_usable_size(ptr)); ptr = (char *)realloc(ptr, 100); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(100U, malloc_usable_size(ptr)); for (size_t i = 0; i < 100; i++) { ASSERT_EQ(0, ptr[i]); } ptr = (char*)realloc(ptr, 50); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(50U, malloc_usable_size(ptr)); for (size_t i = 0; i < 50; i++) { ASSERT_EQ(0, ptr[i]); } ptr = (char*)realloc(ptr, 150); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(150U, malloc_usable_size(ptr)); for (size_t i = 0; i < 50; i++) { ASSERT_EQ(0, ptr[i]); } memset(ptr, 0, 150); ptr = (char*)realloc(ptr, 425); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(425U, malloc_usable_size(ptr)); for (size_t i = 0; i < 150; i++) { ASSERT_EQ(0, ptr[i]); } free(ptr); } TEST(malloc, realloc_overflow) { SKIP_WITH_HWASAN; errno = 0; ASSERT_EQ(nullptr, realloc(nullptr, SIZE_MAX)); ASSERT_ERRNO(ENOMEM); void* ptr = malloc(100); ASSERT_TRUE(ptr != nullptr); errno = 0; ASSERT_EQ(nullptr, realloc(ptr, SIZE_MAX)); ASSERT_ERRNO(ENOMEM); free(ptr); } #if defined(HAVE_DEPRECATED_MALLOC_FUNCS) extern "C" void* pvalloc(size_t); extern "C" void* valloc(size_t); #endif TEST(malloc, pvalloc_std) { #if defined(HAVE_DEPRECATED_MALLOC_FUNCS) size_t pagesize = sysconf(_SC_PAGESIZE); void* ptr = pvalloc(100); ASSERT_TRUE(ptr != nullptr); ASSERT_TRUE((reinterpret_cast(ptr) & (pagesize-1)) == 0); ASSERT_LE(pagesize, malloc_usable_size(ptr)); free(ptr); #else GTEST_SKIP() << "pvalloc not supported."; #endif } TEST(malloc, pvalloc_overflow) { #if defined(HAVE_DEPRECATED_MALLOC_FUNCS) ASSERT_EQ(nullptr, pvalloc(SIZE_MAX)); #else GTEST_SKIP() << "pvalloc not supported."; #endif } TEST(malloc, valloc_std) { #if defined(HAVE_DEPRECATED_MALLOC_FUNCS) size_t pagesize = sysconf(_SC_PAGESIZE); void* ptr = valloc(100); ASSERT_TRUE(ptr != nullptr); ASSERT_TRUE((reinterpret_cast(ptr) & (pagesize-1)) == 0); free(ptr); #else GTEST_SKIP() << "valloc not supported."; #endif } TEST(malloc, valloc_overflow) { #if defined(HAVE_DEPRECATED_MALLOC_FUNCS) ASSERT_EQ(nullptr, valloc(SIZE_MAX)); #else GTEST_SKIP() << "valloc not supported."; #endif } TEST(malloc, malloc_info) { #ifdef __BIONIC__ SKIP_WITH_HWASAN; // hwasan does not implement malloc_info TemporaryFile tf; ASSERT_TRUE(tf.fd != -1); FILE* fp = fdopen(tf.fd, "w+"); tf.release(); ASSERT_TRUE(fp != nullptr); ASSERT_EQ(0, malloc_info(0, fp)); ASSERT_EQ(0, fclose(fp)); std::string contents; ASSERT_TRUE(android::base::ReadFileToString(tf.path, &contents)); tinyxml2::XMLDocument doc; ASSERT_EQ(tinyxml2::XML_SUCCESS, doc.Parse(contents.c_str())); auto root = doc.FirstChildElement(); ASSERT_NE(nullptr, root); ASSERT_STREQ("malloc", root->Name()); std::string version(root->Attribute("version")); if (version == "jemalloc-1") { auto arena = root->FirstChildElement(); for (; arena != nullptr; arena = arena->NextSiblingElement()) { int val; ASSERT_STREQ("heap", arena->Name()); ASSERT_EQ(tinyxml2::XML_SUCCESS, arena->QueryIntAttribute("nr", &val)); ASSERT_EQ(tinyxml2::XML_SUCCESS, arena->FirstChildElement("allocated-large")->QueryIntText(&val)); ASSERT_EQ(tinyxml2::XML_SUCCESS, arena->FirstChildElement("allocated-huge")->QueryIntText(&val)); ASSERT_EQ(tinyxml2::XML_SUCCESS, arena->FirstChildElement("allocated-bins")->QueryIntText(&val)); ASSERT_EQ(tinyxml2::XML_SUCCESS, arena->FirstChildElement("bins-total")->QueryIntText(&val)); auto bin = arena->FirstChildElement("bin"); for (; bin != nullptr; bin = bin ->NextSiblingElement()) { if (strcmp(bin->Name(), "bin") == 0) { ASSERT_EQ(tinyxml2::XML_SUCCESS, bin->QueryIntAttribute("nr", &val)); ASSERT_EQ(tinyxml2::XML_SUCCESS, bin->FirstChildElement("allocated")->QueryIntText(&val)); ASSERT_EQ(tinyxml2::XML_SUCCESS, bin->FirstChildElement("nmalloc")->QueryIntText(&val)); ASSERT_EQ(tinyxml2::XML_SUCCESS, bin->FirstChildElement("ndalloc")->QueryIntText(&val)); } } } } else if (version == "scudo-1") { auto element = root->FirstChildElement(); for (; element != nullptr; element = element->NextSiblingElement()) { int val; ASSERT_STREQ("alloc", element->Name()); ASSERT_EQ(tinyxml2::XML_SUCCESS, element->QueryIntAttribute("size", &val)); ASSERT_EQ(tinyxml2::XML_SUCCESS, element->QueryIntAttribute("count", &val)); } } else { // Do not verify output for debug malloc. ASSERT_TRUE(version == "debug-malloc-1") << "Unknown version: " << version; } #endif } TEST(malloc, malloc_info_matches_mallinfo) { #ifdef __BIONIC__ SKIP_WITH_HWASAN; // hwasan does not implement malloc_info TemporaryFile tf; ASSERT_TRUE(tf.fd != -1); FILE* fp = fdopen(tf.fd, "w+"); tf.release(); ASSERT_TRUE(fp != nullptr); size_t mallinfo_before_allocated_bytes = mallinfo().uordblks; ASSERT_EQ(0, malloc_info(0, fp)); size_t mallinfo_after_allocated_bytes = mallinfo().uordblks; ASSERT_EQ(0, fclose(fp)); std::string contents; ASSERT_TRUE(android::base::ReadFileToString(tf.path, &contents)); tinyxml2::XMLDocument doc; ASSERT_EQ(tinyxml2::XML_SUCCESS, doc.Parse(contents.c_str())); size_t total_allocated_bytes = 0; auto root = doc.FirstChildElement(); ASSERT_NE(nullptr, root); ASSERT_STREQ("malloc", root->Name()); std::string version(root->Attribute("version")); if (version == "jemalloc-1") { auto arena = root->FirstChildElement(); for (; arena != nullptr; arena = arena->NextSiblingElement()) { int val; ASSERT_STREQ("heap", arena->Name()); ASSERT_EQ(tinyxml2::XML_SUCCESS, arena->QueryIntAttribute("nr", &val)); ASSERT_EQ(tinyxml2::XML_SUCCESS, arena->FirstChildElement("allocated-large")->QueryIntText(&val)); total_allocated_bytes += val; ASSERT_EQ(tinyxml2::XML_SUCCESS, arena->FirstChildElement("allocated-huge")->QueryIntText(&val)); total_allocated_bytes += val; ASSERT_EQ(tinyxml2::XML_SUCCESS, arena->FirstChildElement("allocated-bins")->QueryIntText(&val)); total_allocated_bytes += val; ASSERT_EQ(tinyxml2::XML_SUCCESS, arena->FirstChildElement("bins-total")->QueryIntText(&val)); } // The total needs to be between the mallinfo call before and after // since malloc_info allocates some memory. EXPECT_LE(mallinfo_before_allocated_bytes, total_allocated_bytes); EXPECT_GE(mallinfo_after_allocated_bytes, total_allocated_bytes); } else if (version == "scudo-1") { auto element = root->FirstChildElement(); for (; element != nullptr; element = element->NextSiblingElement()) { ASSERT_STREQ("alloc", element->Name()); int size; ASSERT_EQ(tinyxml2::XML_SUCCESS, element->QueryIntAttribute("size", &size)); int count; ASSERT_EQ(tinyxml2::XML_SUCCESS, element->QueryIntAttribute("count", &count)); total_allocated_bytes += size * count; } // Scudo only gives the information on the primary, so simply make // sure that the value is non-zero. EXPECT_NE(0U, total_allocated_bytes); } else { // Do not verify output for debug malloc. ASSERT_TRUE(version == "debug-malloc-1") << "Unknown version: " << version; } #endif } TEST(malloc, calloc_usable_size) { for (size_t size = 1; size <= 2048; size++) { void* pointer = malloc(size); ASSERT_TRUE(pointer != nullptr); memset(pointer, 0xeb, malloc_usable_size(pointer)); free(pointer); // We should get a previous pointer that has been set to non-zero. // If calloc does not zero out all of the data, this will fail. uint8_t* zero_mem = reinterpret_cast(calloc(1, size)); ASSERT_TRUE(pointer != nullptr); size_t usable_size = malloc_usable_size(zero_mem); for (size_t i = 0; i < usable_size; i++) { ASSERT_EQ(0, zero_mem[i]) << "Failed at allocation size " << size << " at byte " << i; } free(zero_mem); } } TEST(malloc, malloc_0) { void* p = malloc(0); ASSERT_TRUE(p != nullptr); free(p); } TEST(malloc, calloc_0_0) { void* p = calloc(0, 0); ASSERT_TRUE(p != nullptr); free(p); } TEST(malloc, calloc_0_1) { void* p = calloc(0, 1); ASSERT_TRUE(p != nullptr); free(p); } TEST(malloc, calloc_1_0) { void* p = calloc(1, 0); ASSERT_TRUE(p != nullptr); free(p); } TEST(malloc, realloc_nullptr_0) { // realloc(nullptr, size) is actually malloc(size). void* p = realloc(nullptr, 0); ASSERT_TRUE(p != nullptr); free(p); } TEST(malloc, realloc_0) { void* p = malloc(1024); ASSERT_TRUE(p != nullptr); // realloc(p, 0) is actually free(p). void* p2 = realloc(p, 0); ASSERT_TRUE(p2 == nullptr); } constexpr size_t MAX_LOOPS = 200; // Make sure that memory returned by malloc is aligned to allow these data types. TEST(malloc, verify_alignment) { uint32_t** values_32 = new uint32_t*[MAX_LOOPS]; uint64_t** values_64 = new uint64_t*[MAX_LOOPS]; long double** values_ldouble = new long double*[MAX_LOOPS]; // Use filler to attempt to force the allocator to get potentially bad alignments. void** filler = new void*[MAX_LOOPS]; for (size_t i = 0; i < MAX_LOOPS; i++) { // Check uint32_t pointers. filler[i] = malloc(1); ASSERT_TRUE(filler[i] != nullptr); values_32[i] = reinterpret_cast(malloc(sizeof(uint32_t))); ASSERT_TRUE(values_32[i] != nullptr); *values_32[i] = i; ASSERT_EQ(*values_32[i], i); ASSERT_EQ(0U, reinterpret_cast(values_32[i]) & (sizeof(uint32_t) - 1)); free(filler[i]); } for (size_t i = 0; i < MAX_LOOPS; i++) { // Check uint64_t pointers. filler[i] = malloc(1); ASSERT_TRUE(filler[i] != nullptr); values_64[i] = reinterpret_cast(malloc(sizeof(uint64_t))); ASSERT_TRUE(values_64[i] != nullptr); *values_64[i] = 0x1000 + i; ASSERT_EQ(*values_64[i], 0x1000 + i); ASSERT_EQ(0U, reinterpret_cast(values_64[i]) & (sizeof(uint64_t) - 1)); free(filler[i]); } for (size_t i = 0; i < MAX_LOOPS; i++) { // Check long double pointers. filler[i] = malloc(1); ASSERT_TRUE(filler[i] != nullptr); values_ldouble[i] = reinterpret_cast(malloc(sizeof(long double))); ASSERT_TRUE(values_ldouble[i] != nullptr); *values_ldouble[i] = 5.5 + i; ASSERT_DOUBLE_EQ(*values_ldouble[i], 5.5 + i); // 32 bit glibc has a long double size of 12 bytes, so hardcode the // required alignment to 0x7. #if !defined(__BIONIC__) && !defined(__LP64__) ASSERT_EQ(0U, reinterpret_cast(values_ldouble[i]) & 0x7); #else ASSERT_EQ(0U, reinterpret_cast(values_ldouble[i]) & (sizeof(long double) - 1)); #endif free(filler[i]); } for (size_t i = 0; i < MAX_LOOPS; i++) { free(values_32[i]); free(values_64[i]); free(values_ldouble[i]); } delete[] filler; delete[] values_32; delete[] values_64; delete[] values_ldouble; } TEST(malloc, mallopt_smoke) { #if defined(__BIONIC__) errno = 0; ASSERT_EQ(0, mallopt(-1000, 1)); // mallopt doesn't set errno. ASSERT_ERRNO(0); #else GTEST_SKIP() << "bionic-only test"; #endif } TEST(malloc, mallopt_decay) { #if defined(__BIONIC__) SKIP_WITH_HWASAN << "hwasan does not implement mallopt"; ASSERT_EQ(1, mallopt(M_DECAY_TIME, -1)); ASSERT_EQ(1, mallopt(M_DECAY_TIME, 1)); ASSERT_EQ(1, mallopt(M_DECAY_TIME, 0)); ASSERT_EQ(1, mallopt(M_DECAY_TIME, 1)); ASSERT_EQ(1, mallopt(M_DECAY_TIME, 0)); ASSERT_EQ(1, mallopt(M_DECAY_TIME, -1)); #else GTEST_SKIP() << "bionic-only test"; #endif } TEST(malloc, mallopt_purge) { #if defined(__BIONIC__) SKIP_WITH_HWASAN << "hwasan does not implement mallopt"; ASSERT_EQ(1, mallopt(M_PURGE, 0)); #else GTEST_SKIP() << "bionic-only test"; #endif } TEST(malloc, mallopt_purge_all) { #if defined(__BIONIC__) SKIP_WITH_HWASAN << "hwasan does not implement mallopt"; ASSERT_EQ(1, mallopt(M_PURGE_ALL, 0)); #else GTEST_SKIP() << "bionic-only test"; #endif } TEST(malloc, mallopt_log_stats) { #if defined(__BIONIC__) SKIP_WITH_HWASAN << "hwasan does not implement mallopt"; ASSERT_EQ(1, mallopt(M_LOG_STATS, 0)); #else GTEST_SKIP() << "bionic-only test"; #endif } // Verify that all of the mallopt values are unique. TEST(malloc, mallopt_unique_params) { #if defined(__BIONIC__) std::vector> params{ std::make_pair(M_DECAY_TIME, "M_DECAY_TIME"), std::make_pair(M_PURGE, "M_PURGE"), std::make_pair(M_PURGE_ALL, "M_PURGE_ALL"), std::make_pair(M_MEMTAG_TUNING, "M_MEMTAG_TUNING"), std::make_pair(M_THREAD_DISABLE_MEM_INIT, "M_THREAD_DISABLE_MEM_INIT"), std::make_pair(M_CACHE_COUNT_MAX, "M_CACHE_COUNT_MAX"), std::make_pair(M_CACHE_SIZE_MAX, "M_CACHE_SIZE_MAX"), std::make_pair(M_TSDS_COUNT_MAX, "M_TSDS_COUNT_MAX"), std::make_pair(M_BIONIC_ZERO_INIT, "M_BIONIC_ZERO_INIT"), std::make_pair(M_BIONIC_SET_HEAP_TAGGING_LEVEL, "M_BIONIC_SET_HEAP_TAGGING_LEVEL"), std::make_pair(M_LOG_STATS, "M_LOG_STATS"), }; std::unordered_map all_params; for (const auto& param : params) { EXPECT_TRUE(all_params.count(param.first) == 0) << "mallopt params " << all_params[param.first] << " and " << param.second << " have the same value " << param.first; all_params.insert(param); } #else GTEST_SKIP() << "bionic-only test"; #endif } #if defined(__BIONIC__) static void GetAllocatorVersion(bool* allocator_scudo) { TemporaryFile tf; ASSERT_TRUE(tf.fd != -1); FILE* fp = fdopen(tf.fd, "w+"); tf.release(); ASSERT_TRUE(fp != nullptr); if (malloc_info(0, fp) != 0) { *allocator_scudo = false; return; } ASSERT_EQ(0, fclose(fp)); std::string contents; ASSERT_TRUE(android::base::ReadFileToString(tf.path, &contents)); tinyxml2::XMLDocument doc; ASSERT_EQ(tinyxml2::XML_SUCCESS, doc.Parse(contents.c_str())); auto root = doc.FirstChildElement(); ASSERT_NE(nullptr, root); ASSERT_STREQ("malloc", root->Name()); std::string version(root->Attribute("version")); *allocator_scudo = (version == "scudo-1"); } #endif TEST(malloc, mallopt_scudo_only_options) { #if defined(__BIONIC__) SKIP_WITH_HWASAN << "hwasan does not implement mallopt"; bool allocator_scudo; GetAllocatorVersion(&allocator_scudo); if (!allocator_scudo) { GTEST_SKIP() << "scudo allocator only test"; } ASSERT_EQ(1, mallopt(M_CACHE_COUNT_MAX, 100)); ASSERT_EQ(1, mallopt(M_CACHE_SIZE_MAX, 1024 * 1024 * 2)); ASSERT_EQ(1, mallopt(M_TSDS_COUNT_MAX, 8)); #else GTEST_SKIP() << "bionic-only test"; #endif } TEST(malloc, reallocarray_overflow) { #if HAVE_REALLOCARRAY // Values that cause overflow to a result small enough (8 on LP64) that malloc would "succeed". size_t a = static_cast(INTPTR_MIN + 4); size_t b = 2; errno = 0; ASSERT_TRUE(reallocarray(nullptr, a, b) == nullptr); ASSERT_ERRNO(ENOMEM); errno = 0; ASSERT_TRUE(reallocarray(nullptr, b, a) == nullptr); ASSERT_ERRNO(ENOMEM); #else GTEST_SKIP() << "reallocarray not available"; #endif } TEST(malloc, reallocarray) { #if HAVE_REALLOCARRAY void* p = reallocarray(nullptr, 2, 32); ASSERT_TRUE(p != nullptr); ASSERT_GE(malloc_usable_size(p), 64U); #else GTEST_SKIP() << "reallocarray not available"; #endif } TEST(malloc, mallinfo) { #if defined(__BIONIC__) || defined(ANDROID_HOST_MUSL) SKIP_WITH_HWASAN << "hwasan does not implement mallinfo"; static size_t sizes[] = { 8, 32, 128, 4096, 32768, 131072, 1024000, 10240000, 20480000, 300000000 }; static constexpr size_t kMaxAllocs = 50; for (size_t size : sizes) { // If some of these allocations are stuck in a thread cache, then keep // looping until we make an allocation that changes the total size of the // memory allocated. // jemalloc implementations counts the thread cache allocations against // total memory allocated. void* ptrs[kMaxAllocs] = {}; bool pass = false; for (size_t i = 0; i < kMaxAllocs; i++) { size_t allocated = mallinfo().uordblks; ptrs[i] = malloc(size); ASSERT_TRUE(ptrs[i] != nullptr); size_t new_allocated = mallinfo().uordblks; if (allocated != new_allocated) { size_t usable_size = malloc_usable_size(ptrs[i]); // Only check if the total got bigger by at least allocation size. // Sometimes the mallinfo numbers can go backwards due to compaction // and/or freeing of cached data. if (new_allocated >= allocated + usable_size) { pass = true; break; } } } for (void* ptr : ptrs) { free(ptr); } ASSERT_TRUE(pass) << "For size " << size << " allocated bytes did not increase after " << kMaxAllocs << " allocations."; } #else GTEST_SKIP() << "glibc is broken"; #endif } TEST(malloc, mallinfo2) { #if defined(__BIONIC__) || defined(ANDROID_HOST_MUSL) SKIP_WITH_HWASAN << "hwasan does not implement mallinfo2"; static size_t sizes[] = {8, 32, 128, 4096, 32768, 131072, 1024000, 10240000, 20480000, 300000000}; static constexpr size_t kMaxAllocs = 50; for (size_t size : sizes) { // If some of these allocations are stuck in a thread cache, then keep // looping until we make an allocation that changes the total size of the // memory allocated. // jemalloc implementations counts the thread cache allocations against // total memory allocated. void* ptrs[kMaxAllocs] = {}; bool pass = false; for (size_t i = 0; i < kMaxAllocs; i++) { struct mallinfo info = mallinfo(); struct mallinfo2 info2 = mallinfo2(); // Verify that mallinfo and mallinfo2 are exactly the same. ASSERT_EQ(static_cast(info.arena), info2.arena); ASSERT_EQ(static_cast(info.ordblks), info2.ordblks); ASSERT_EQ(static_cast(info.smblks), info2.smblks); ASSERT_EQ(static_cast(info.hblks), info2.hblks); ASSERT_EQ(static_cast(info.hblkhd), info2.hblkhd); ASSERT_EQ(static_cast(info.usmblks), info2.usmblks); ASSERT_EQ(static_cast(info.fsmblks), info2.fsmblks); ASSERT_EQ(static_cast(info.uordblks), info2.uordblks); ASSERT_EQ(static_cast(info.fordblks), info2.fordblks); ASSERT_EQ(static_cast(info.keepcost), info2.keepcost); size_t allocated = info2.uordblks; ptrs[i] = malloc(size); ASSERT_TRUE(ptrs[i] != nullptr); info = mallinfo(); info2 = mallinfo2(); // Verify that mallinfo and mallinfo2 are exactly the same. ASSERT_EQ(static_cast(info.arena), info2.arena); ASSERT_EQ(static_cast(info.ordblks), info2.ordblks); ASSERT_EQ(static_cast(info.smblks), info2.smblks); ASSERT_EQ(static_cast(info.hblks), info2.hblks); ASSERT_EQ(static_cast(info.hblkhd), info2.hblkhd); ASSERT_EQ(static_cast(info.usmblks), info2.usmblks); ASSERT_EQ(static_cast(info.fsmblks), info2.fsmblks); ASSERT_EQ(static_cast(info.uordblks), info2.uordblks); ASSERT_EQ(static_cast(info.fordblks), info2.fordblks); ASSERT_EQ(static_cast(info.keepcost), info2.keepcost); size_t new_allocated = info2.uordblks; if (allocated != new_allocated) { size_t usable_size = malloc_usable_size(ptrs[i]); // Only check if the total got bigger by at least allocation size. // Sometimes the mallinfo2 numbers can go backwards due to compaction // and/or freeing of cached data. if (new_allocated >= allocated + usable_size) { pass = true; break; } } } for (void* ptr : ptrs) { free(ptr); } ASSERT_TRUE(pass) << "For size " << size << " allocated bytes did not increase after " << kMaxAllocs << " allocations."; } #else GTEST_SKIP() << "glibc is broken"; #endif } template void __attribute__((optnone)) VerifyAlignment(Type* floating) { size_t expected_alignment = alignof(Type); if (expected_alignment != 0) { ASSERT_EQ(0U, (expected_alignment - 1) & reinterpret_cast(floating)) << "Expected alignment " << expected_alignment << " ptr value " << static_cast(floating); } } template void __attribute__((optnone)) TestAllocateType() { // The number of allocations to do in a row. This is to attempt to // expose the worst case alignment for native allocators that use // bins. static constexpr size_t kMaxConsecutiveAllocs = 100; // Verify using new directly. Type* types[kMaxConsecutiveAllocs]; for (size_t i = 0; i < kMaxConsecutiveAllocs; i++) { types[i] = new Type; VerifyAlignment(types[i]); if (::testing::Test::HasFatalFailure()) { return; } } for (size_t i = 0; i < kMaxConsecutiveAllocs; i++) { delete types[i]; } // Verify using malloc. for (size_t i = 0; i < kMaxConsecutiveAllocs; i++) { types[i] = reinterpret_cast(malloc(sizeof(Type))); ASSERT_TRUE(types[i] != nullptr); VerifyAlignment(types[i]); if (::testing::Test::HasFatalFailure()) { return; } } for (size_t i = 0; i < kMaxConsecutiveAllocs; i++) { free(types[i]); } // Verify using a vector. std::vector type_vector(kMaxConsecutiveAllocs); for (size_t i = 0; i < type_vector.size(); i++) { VerifyAlignment(&type_vector[i]); if (::testing::Test::HasFatalFailure()) { return; } } } #if defined(__ANDROID__) static void __attribute__((optnone)) AndroidVerifyAlignment(size_t alloc_size, size_t aligned_bytes) { void* ptrs[100]; uintptr_t mask = aligned_bytes - 1; for (size_t i = 0; i < sizeof(ptrs) / sizeof(void*); i++) { ptrs[i] = malloc(alloc_size); ASSERT_TRUE(ptrs[i] != nullptr); ASSERT_EQ(0U, reinterpret_cast(ptrs[i]) & mask) << "Expected at least " << aligned_bytes << " byte alignment: size " << alloc_size << " actual ptr " << ptrs[i]; } } #endif void AlignCheck() { // See http://www.open-std.org/jtc1/sc22/wg14/www/docs/summary.htm#dr_445 // for a discussion of type alignment. ASSERT_NO_FATAL_FAILURE(TestAllocateType()); ASSERT_NO_FATAL_FAILURE(TestAllocateType()); ASSERT_NO_FATAL_FAILURE(TestAllocateType()); ASSERT_NO_FATAL_FAILURE(TestAllocateType()); ASSERT_NO_FATAL_FAILURE(TestAllocateType()); ASSERT_NO_FATAL_FAILURE(TestAllocateType()); ASSERT_NO_FATAL_FAILURE(TestAllocateType()); ASSERT_NO_FATAL_FAILURE(TestAllocateType()); ASSERT_NO_FATAL_FAILURE(TestAllocateType()); ASSERT_NO_FATAL_FAILURE(TestAllocateType()); ASSERT_NO_FATAL_FAILURE(TestAllocateType()); ASSERT_NO_FATAL_FAILURE(TestAllocateType()); ASSERT_NO_FATAL_FAILURE(TestAllocateType()); ASSERT_NO_FATAL_FAILURE(TestAllocateType()); ASSERT_NO_FATAL_FAILURE(TestAllocateType()); ASSERT_NO_FATAL_FAILURE(TestAllocateType()); ASSERT_NO_FATAL_FAILURE(TestAllocateType()); #if defined(__ANDROID__) // On Android, there is a lot of code that expects certain alignments: // 1. Allocations of a size that rounds up to a multiple of 16 bytes // must have at least 16 byte alignment. // 2. Allocations of a size that rounds up to a multiple of 8 bytes and // not 16 bytes, are only required to have at least 8 byte alignment. // In addition, on Android clang has been configured for 64 bit such that: // 3. Allocations <= 8 bytes must be aligned to at least 8 bytes. // 4. Allocations > 8 bytes must be aligned to at least 16 bytes. // For 32 bit environments, only the first two requirements must be met. // See http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2293.htm for // a discussion of this alignment mess. The code below is enforcing // strong-alignment, since who knows what code depends on this behavior now. // As mentioned before, for 64 bit this will enforce the higher // requirement since clang expects this behavior on Android now. for (size_t i = 1; i <= 128; i++) { #if defined(__LP64__) if (i <= 8) { AndroidVerifyAlignment(i, 8); } else { AndroidVerifyAlignment(i, 16); } #else size_t rounded = (i + 7) & ~7; if ((rounded % 16) == 0) { AndroidVerifyAlignment(i, 16); } else { AndroidVerifyAlignment(i, 8); } #endif if (::testing::Test::HasFatalFailure()) { return; } } #endif } TEST(malloc, align_check) { AlignCheck(); } // Jemalloc doesn't pass this test right now, so leave it as disabled. TEST(malloc, DISABLED_alloc_after_fork) { // Both of these need to be a power of 2. static constexpr size_t kMinAllocationSize = 8; static constexpr size_t kMaxAllocationSize = 2097152; static constexpr size_t kNumAllocatingThreads = 5; static constexpr size_t kNumForkLoops = 100; std::atomic_bool stop; // Create threads that simply allocate and free different sizes. std::vector threads; for (size_t i = 0; i < kNumAllocatingThreads; i++) { std::thread* t = new std::thread([&stop] { while (!stop) { for (size_t size = kMinAllocationSize; size <= kMaxAllocationSize; size <<= 1) { void* ptr; DoNotOptimize(ptr = malloc(size)); free(ptr); } } }); threads.push_back(t); } // Create a thread to fork and allocate. for (size_t i = 0; i < kNumForkLoops; i++) { pid_t pid; if ((pid = fork()) == 0) { for (size_t size = kMinAllocationSize; size <= kMaxAllocationSize; size <<= 1) { void* ptr; DoNotOptimize(ptr = malloc(size)); ASSERT_TRUE(ptr != nullptr); // Make sure we can touch all of the allocation. memset(ptr, 0x1, size); ASSERT_LE(size, malloc_usable_size(ptr)); free(ptr); } _exit(10); } ASSERT_NE(-1, pid); AssertChildExited(pid, 10); } stop = true; for (auto thread : threads) { thread->join(); delete thread; } } TEST(android_mallopt, error_on_unexpected_option) { #if defined(__BIONIC__) const int unrecognized_option = -1; errno = 0; EXPECT_EQ(false, android_mallopt(unrecognized_option, nullptr, 0)); EXPECT_ERRNO(ENOTSUP); #else GTEST_SKIP() << "bionic-only test"; #endif } bool IsDynamic() { #if defined(__LP64__) Elf64_Ehdr ehdr; #else Elf32_Ehdr ehdr; #endif std::string path(android::base::GetExecutablePath()); int fd = open(path.c_str(), O_RDONLY | O_CLOEXEC); if (fd == -1) { // Assume dynamic on error. return true; } bool read_completed = android::base::ReadFully(fd, &ehdr, sizeof(ehdr)); close(fd); // Assume dynamic in error cases. return !read_completed || ehdr.e_type == ET_DYN; } TEST(android_mallopt, init_zygote_child_profiling) { #if defined(__BIONIC__) // Successful call. errno = 0; if (IsDynamic()) { EXPECT_EQ(true, android_mallopt(M_INIT_ZYGOTE_CHILD_PROFILING, nullptr, 0)); EXPECT_ERRNO(0); } else { // Not supported in static executables. EXPECT_EQ(false, android_mallopt(M_INIT_ZYGOTE_CHILD_PROFILING, nullptr, 0)); EXPECT_ERRNO(ENOTSUP); } // Unexpected arguments rejected. errno = 0; char unexpected = 0; EXPECT_EQ(false, android_mallopt(M_INIT_ZYGOTE_CHILD_PROFILING, &unexpected, 1)); if (IsDynamic()) { EXPECT_ERRNO(EINVAL); } else { EXPECT_ERRNO(ENOTSUP); } #else GTEST_SKIP() << "bionic-only test"; #endif } #if defined(__BIONIC__) template void CheckAllocationFunction(FuncType func) { // Assumes that no more than 108MB of memory is allocated before this. size_t limit = 128 * 1024 * 1024; ASSERT_TRUE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit))); if (!func(20 * 1024 * 1024)) exit(1); if (func(128 * 1024 * 1024)) exit(1); exit(0); } #endif TEST(android_mallopt, set_allocation_limit) { #if defined(__BIONIC__) EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { return calloc(bytes, 1) != nullptr; }), testing::ExitedWithCode(0), ""); EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { return calloc(1, bytes) != nullptr; }), testing::ExitedWithCode(0), ""); EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { return malloc(bytes) != nullptr; }), testing::ExitedWithCode(0), ""); EXPECT_EXIT(CheckAllocationFunction( [](size_t bytes) { return memalign(sizeof(void*), bytes) != nullptr; }), testing::ExitedWithCode(0), ""); EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { void* ptr; return posix_memalign(&ptr, sizeof(void *), bytes) == 0; }), testing::ExitedWithCode(0), ""); EXPECT_EXIT(CheckAllocationFunction( [](size_t bytes) { return aligned_alloc(sizeof(void*), bytes) != nullptr; }), testing::ExitedWithCode(0), ""); EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { void* p = malloc(1024 * 1024); return realloc(p, bytes) != nullptr; }), testing::ExitedWithCode(0), ""); #if !defined(__LP64__) EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { return pvalloc(bytes) != nullptr; }), testing::ExitedWithCode(0), ""); EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { return valloc(bytes) != nullptr; }), testing::ExitedWithCode(0), ""); #endif #else GTEST_SKIP() << "bionic extension"; #endif } TEST(android_mallopt, set_allocation_limit_multiple) { #if defined(__BIONIC__) // Only the first set should work. size_t limit = 256 * 1024 * 1024; ASSERT_TRUE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit))); limit = 32 * 1024 * 1024; ASSERT_FALSE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit))); #else GTEST_SKIP() << "bionic extension"; #endif } #if defined(__BIONIC__) static constexpr size_t kAllocationSize = 8 * 1024 * 1024; static size_t GetMaxAllocations() { size_t max_pointers = 0; void* ptrs[20]; for (size_t i = 0; i < sizeof(ptrs) / sizeof(void*); i++) { ptrs[i] = malloc(kAllocationSize); if (ptrs[i] == nullptr) { max_pointers = i; break; } } for (size_t i = 0; i < max_pointers; i++) { free(ptrs[i]); } return max_pointers; } static void VerifyMaxPointers(size_t max_pointers) { // Now verify that we can allocate the same number as before. void* ptrs[20]; for (size_t i = 0; i < max_pointers; i++) { ptrs[i] = malloc(kAllocationSize); ASSERT_TRUE(ptrs[i] != nullptr) << "Failed to allocate on iteration " << i; } // Make sure the next allocation still fails. ASSERT_TRUE(malloc(kAllocationSize) == nullptr); for (size_t i = 0; i < max_pointers; i++) { free(ptrs[i]); } } #endif TEST(android_mallopt, set_allocation_limit_realloc_increase) { #if defined(__BIONIC__) size_t limit = 128 * 1024 * 1024; ASSERT_TRUE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit))); size_t max_pointers = GetMaxAllocations(); ASSERT_TRUE(max_pointers != 0) << "Limit never reached."; void* memory = malloc(10 * 1024 * 1024); ASSERT_TRUE(memory != nullptr); // Increase size. memory = realloc(memory, 20 * 1024 * 1024); ASSERT_TRUE(memory != nullptr); memory = realloc(memory, 40 * 1024 * 1024); ASSERT_TRUE(memory != nullptr); memory = realloc(memory, 60 * 1024 * 1024); ASSERT_TRUE(memory != nullptr); memory = realloc(memory, 80 * 1024 * 1024); ASSERT_TRUE(memory != nullptr); // Now push past limit. memory = realloc(memory, 130 * 1024 * 1024); ASSERT_TRUE(memory == nullptr); VerifyMaxPointers(max_pointers); #else GTEST_SKIP() << "bionic extension"; #endif } TEST(android_mallopt, set_allocation_limit_realloc_decrease) { #if defined(__BIONIC__) size_t limit = 100 * 1024 * 1024; ASSERT_TRUE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit))); size_t max_pointers = GetMaxAllocations(); ASSERT_TRUE(max_pointers != 0) << "Limit never reached."; void* memory = malloc(80 * 1024 * 1024); ASSERT_TRUE(memory != nullptr); // Decrease size. memory = realloc(memory, 60 * 1024 * 1024); ASSERT_TRUE(memory != nullptr); memory = realloc(memory, 40 * 1024 * 1024); ASSERT_TRUE(memory != nullptr); memory = realloc(memory, 20 * 1024 * 1024); ASSERT_TRUE(memory != nullptr); memory = realloc(memory, 10 * 1024 * 1024); ASSERT_TRUE(memory != nullptr); free(memory); VerifyMaxPointers(max_pointers); #else GTEST_SKIP() << "bionic extension"; #endif } TEST(android_mallopt, set_allocation_limit_realloc_free) { #if defined(__BIONIC__) size_t limit = 100 * 1024 * 1024; ASSERT_TRUE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit))); size_t max_pointers = GetMaxAllocations(); ASSERT_TRUE(max_pointers != 0) << "Limit never reached."; void* memory = malloc(60 * 1024 * 1024); ASSERT_TRUE(memory != nullptr); memory = realloc(memory, 0); ASSERT_TRUE(memory == nullptr); VerifyMaxPointers(max_pointers); #else GTEST_SKIP() << "bionic extension"; #endif } #if defined(__BIONIC__) static void SetAllocationLimitMultipleThreads() { static constexpr size_t kNumThreads = 4; std::atomic_bool start_running = false; std::atomic num_running; std::atomic num_successful; std::unique_ptr threads[kNumThreads]; for (size_t i = 0; i < kNumThreads; i++) { threads[i].reset(new std::thread([&num_running, &start_running, &num_successful] { ++num_running; while (!start_running) { } size_t limit = 500 * 1024 * 1024; if (android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit))) { ++num_successful; } })); } // Wait until all of the threads have started. while (num_running != kNumThreads) ; // Now start all of the threads setting the mallopt at once. start_running = true; // Send hardcoded signal (BIONIC_SIGNAL_PROFILER with value 0) to trigger // heapprofd handler. This will verify that changing the limit while // the allocation handlers are being changed at the same time works, // or that the limit handler is changed first and this also works properly. union sigval signal_value {}; ASSERT_EQ(0, sigqueue(getpid(), BIONIC_SIGNAL_PROFILER, signal_value)); // Wait for all of the threads to finish. for (size_t i = 0; i < kNumThreads; i++) { threads[i]->join(); } ASSERT_EQ(1U, num_successful) << "Only one thread should be able to set the limit."; _exit(0); } #endif TEST(android_mallopt, set_allocation_limit_multiple_threads) { #if defined(__BIONIC__) if (IsDynamic()) { ASSERT_TRUE(android_mallopt(M_INIT_ZYGOTE_CHILD_PROFILING, nullptr, 0)); } // Run this a number of times as a stress test. for (size_t i = 0; i < 100; i++) { // Not using ASSERT_EXIT because errors messages are not displayed. pid_t pid; if ((pid = fork()) == 0) { ASSERT_NO_FATAL_FAILURE(SetAllocationLimitMultipleThreads()); } ASSERT_NE(-1, pid); int status; ASSERT_EQ(pid, wait(&status)); ASSERT_EQ(0, WEXITSTATUS(status)); } #else GTEST_SKIP() << "bionic extension"; #endif } #if defined(__BIONIC__) using Mode = android_mallopt_gwp_asan_options_t::Mode; TEST(android_mallopt, DISABLED_multiple_enable_gwp_asan) { android_mallopt_gwp_asan_options_t options; options.program_name = ""; // Don't infer GWP-ASan options from sysprops. options.mode = Mode::APP_MANIFEST_NEVER; // GWP-ASan should already be enabled. Trying to enable or disable it should // always pass. ASSERT_TRUE(android_mallopt(M_INITIALIZE_GWP_ASAN, &options, sizeof(options))); options.mode = Mode::APP_MANIFEST_DEFAULT; ASSERT_TRUE(android_mallopt(M_INITIALIZE_GWP_ASAN, &options, sizeof(options))); } #endif // defined(__BIONIC__) TEST(android_mallopt, multiple_enable_gwp_asan) { #if defined(__BIONIC__) // Always enable GWP-Asan, with default options. RunGwpAsanTest("*.DISABLED_multiple_enable_gwp_asan"); #else GTEST_SKIP() << "bionic extension"; #endif } TEST(android_mallopt, memtag_stack_is_on) { #if defined(__BIONIC__) bool memtag_stack; EXPECT_TRUE(android_mallopt(M_MEMTAG_STACK_IS_ON, &memtag_stack, sizeof(memtag_stack))); #else GTEST_SKIP() << "bionic extension"; #endif } void TestHeapZeroing(int num_iterations, int (*get_alloc_size)(int iteration)) { std::vector allocs; constexpr int kMaxBytesToCheckZero = 64; const char kBlankMemory[kMaxBytesToCheckZero] = {}; for (int i = 0; i < num_iterations; ++i) { int size = get_alloc_size(i); allocs.push_back(malloc(size)); memset(allocs.back(), 'X', std::min(size, kMaxBytesToCheckZero)); } for (void* alloc : allocs) { free(alloc); } allocs.clear(); for (int i = 0; i < num_iterations; ++i) { int size = get_alloc_size(i); allocs.push_back(malloc(size)); ASSERT_EQ(0, memcmp(allocs.back(), kBlankMemory, std::min(size, kMaxBytesToCheckZero))); } for (void* alloc : allocs) { free(alloc); } } TEST(malloc, zero_init) { #if defined(__BIONIC__) SKIP_WITH_HWASAN << "hwasan does not implement mallopt"; bool allocator_scudo; GetAllocatorVersion(&allocator_scudo); if (!allocator_scudo) { GTEST_SKIP() << "scudo allocator only test"; } mallopt(M_BIONIC_ZERO_INIT, 1); // Test using a block of 4K small (1-32 byte) allocations. TestHeapZeroing(/* num_iterations */ 0x1000, [](int iteration) -> int { return 1 + iteration % 32; }); // Also test large allocations that land in the scudo secondary, as this is // the only part of Scudo that's changed by enabling zero initialization with // MTE. Uses 32 allocations, totalling 60MiB memory. Decay time (time to // release secondary allocations back to the OS) was modified to 0ms/1ms by // mallopt_decay. Ensure that we delay for at least a second before releasing // pages to the OS in order to avoid implicit zeroing by the kernel. mallopt(M_DECAY_TIME, 1); TestHeapZeroing(/* num_iterations */ 32, [](int iteration) -> int { return 1 << (19 + iteration % 4); }); #else GTEST_SKIP() << "bionic-only test"; #endif } // Note that MTE is enabled on cc_tests on devices that support MTE. TEST(malloc, disable_mte) { #if defined(__BIONIC__) if (!mte_supported()) { GTEST_SKIP() << "This function can only be tested with MTE"; } sem_t sem; ASSERT_EQ(0, sem_init(&sem, 0, 0)); pthread_t thread; ASSERT_EQ(0, pthread_create( &thread, nullptr, [](void* ptr) -> void* { auto* sem = reinterpret_cast(ptr); sem_wait(sem); return reinterpret_cast(prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0)); }, &sem)); ASSERT_EQ(1, mallopt(M_BIONIC_SET_HEAP_TAGGING_LEVEL, M_HEAP_TAGGING_LEVEL_NONE)); ASSERT_EQ(0, sem_post(&sem)); int my_tagged_addr_ctrl = prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0); ASSERT_EQ(static_cast(PR_MTE_TCF_NONE), my_tagged_addr_ctrl & PR_MTE_TCF_MASK); void* retval; ASSERT_EQ(0, pthread_join(thread, &retval)); int thread_tagged_addr_ctrl = reinterpret_cast(retval); ASSERT_EQ(my_tagged_addr_ctrl, thread_tagged_addr_ctrl); #else GTEST_SKIP() << "bionic extension"; #endif } TEST(malloc, allocation_slack) { #if defined(__BIONIC__) SKIP_WITH_NATIVE_BRIDGE; // http://b/189606147 bool allocator_scudo; GetAllocatorVersion(&allocator_scudo); if (!allocator_scudo) { GTEST_SKIP() << "scudo allocator only test"; } // Test that older target SDK levels let you access a few bytes off the end of // a large allocation. android_set_application_target_sdk_version(29); auto p = std::make_unique(131072); volatile char *vp = p.get(); volatile char oob ATTRIBUTE_UNUSED = vp[131072]; #else GTEST_SKIP() << "bionic extension"; #endif } // Regression test for b/206701345 -- scudo bug, MTE only. // Fix: https://reviews.llvm.org/D105261 // Fix: https://android-review.googlesource.com/c/platform/external/scudo/+/1763655 TEST(malloc, realloc_mte_crash_b206701345) { // We want to hit in-place realloc at the very end of an mmap-ed region. Not // all size classes allow such placement - mmap size has to be divisible by // the block size. At the time of writing this could only be reproduced with // 64 byte size class (i.e. 48 byte allocations), but that may change in the // future. Try several different classes at the lower end. std::vector ptrs(10000); for (int i = 1; i < 32; ++i) { size_t sz = 16 * i - 1; for (void*& p : ptrs) { p = realloc(malloc(sz), sz + 1); } for (void* p : ptrs) { free(p); } } } void VerifyAllocationsAreZero(std::function alloc_func, std::string function_name, std::vector& test_sizes, size_t max_allocations) { // Vector of zero'd data used for comparisons. Make it twice the largest size. std::vector zero(test_sizes.back() * 2, 0); SCOPED_TRACE(testing::Message() << function_name << " failed to zero memory"); for (size_t test_size : test_sizes) { std::vector ptrs(max_allocations); for (size_t i = 0; i < ptrs.size(); i++) { SCOPED_TRACE(testing::Message() << "size " << test_size << " at iteration " << i); ptrs[i] = alloc_func(test_size); ASSERT_TRUE(ptrs[i] != nullptr); size_t alloc_size = malloc_usable_size(ptrs[i]); ASSERT_LE(alloc_size, zero.size()); ASSERT_EQ(0, memcmp(ptrs[i], zero.data(), alloc_size)); // Set the memory to non-zero to make sure if the pointer // is reused it's still zero. memset(ptrs[i], 0xab, alloc_size); } // Free the pointers. for (size_t i = 0; i < ptrs.size(); i++) { free(ptrs[i]); } for (size_t i = 0; i < ptrs.size(); i++) { SCOPED_TRACE(testing::Message() << "size " << test_size << " at iteration " << i); ptrs[i] = malloc(test_size); ASSERT_TRUE(ptrs[i] != nullptr); size_t alloc_size = malloc_usable_size(ptrs[i]); ASSERT_LE(alloc_size, zero.size()); ASSERT_EQ(0, memcmp(ptrs[i], zero.data(), alloc_size)); } // Free all of the pointers later to maximize the chance of reusing from // the first loop. for (size_t i = 0; i < ptrs.size(); i++) { free(ptrs[i]); } } } // Verify that small and medium allocations are always zero. // @CddTest = 9.7/C-4-1 TEST(malloc, zeroed_allocations_small_medium_sizes) { #if !defined(__BIONIC__) GTEST_SKIP() << "Only valid on bionic"; #endif if (IsLowRamDevice()) { GTEST_SKIP() << "Skipped on low memory devices."; } constexpr size_t kMaxAllocations = 1024; std::vector test_sizes = {16, 48, 128, 1024, 4096, 65536}; VerifyAllocationsAreZero([](size_t size) -> void* { return malloc(size); }, "malloc", test_sizes, kMaxAllocations); VerifyAllocationsAreZero([](size_t size) -> void* { return memalign(64, size); }, "memalign", test_sizes, kMaxAllocations); VerifyAllocationsAreZero( [](size_t size) -> void* { void* ptr; if (posix_memalign(&ptr, 64, size) == 0) { return ptr; } return nullptr; }, "posix_memalign", test_sizes, kMaxAllocations); } // Verify that large allocations are always zero. // @CddTest = 9.7/C-4-1 TEST(malloc, zeroed_allocations_large_sizes) { #if !defined(__BIONIC__) GTEST_SKIP() << "Only valid on bionic"; #endif if (IsLowRamDevice()) { GTEST_SKIP() << "Skipped on low memory devices."; } constexpr size_t kMaxAllocations = 20; std::vector test_sizes = {1000000, 2000000, 3000000, 4000000}; VerifyAllocationsAreZero([](size_t size) -> void* { return malloc(size); }, "malloc", test_sizes, kMaxAllocations); VerifyAllocationsAreZero([](size_t size) -> void* { return memalign(64, size); }, "memalign", test_sizes, kMaxAllocations); VerifyAllocationsAreZero( [](size_t size) -> void* { void* ptr; if (posix_memalign(&ptr, 64, size) == 0) { return ptr; } return nullptr; }, "posix_memalign", test_sizes, kMaxAllocations); } // Verify that reallocs are zeroed when expanded. // @CddTest = 9.7/C-4-1 TEST(malloc, zeroed_allocations_realloc) { #if !defined(__BIONIC__) GTEST_SKIP() << "Only valid on bionic"; #endif if (IsLowRamDevice()) { GTEST_SKIP() << "Skipped on low memory devices."; } // Vector of zero'd data used for comparisons. constexpr size_t kMaxMemorySize = 131072; std::vector zero(kMaxMemorySize, 0); constexpr size_t kMaxAllocations = 1024; std::vector test_sizes = {16, 48, 128, 1024, 4096, 65536}; // Do a number of allocations and set them to non-zero. for (size_t test_size : test_sizes) { std::vector ptrs(kMaxAllocations); for (size_t i = 0; i < kMaxAllocations; i++) { ptrs[i] = malloc(test_size); ASSERT_TRUE(ptrs[i] != nullptr); // Set the memory to non-zero to make sure if the pointer // is reused it's still zero. memset(ptrs[i], 0xab, malloc_usable_size(ptrs[i])); } // Free the pointers. for (size_t i = 0; i < kMaxAllocations; i++) { free(ptrs[i]); } } // Do the reallocs to a larger size and verify the rest of the allocation // is zero. constexpr size_t kInitialSize = 8; for (size_t test_size : test_sizes) { std::vector ptrs(kMaxAllocations); for (size_t i = 0; i < kMaxAllocations; i++) { ptrs[i] = malloc(kInitialSize); ASSERT_TRUE(ptrs[i] != nullptr); size_t orig_alloc_size = malloc_usable_size(ptrs[i]); ptrs[i] = realloc(ptrs[i], test_size); ASSERT_TRUE(ptrs[i] != nullptr); size_t new_alloc_size = malloc_usable_size(ptrs[i]); char* ptr = reinterpret_cast(ptrs[i]); ASSERT_EQ(0, memcmp(&ptr[orig_alloc_size], zero.data(), new_alloc_size - orig_alloc_size)) << "realloc from " << kInitialSize << " to size " << test_size << " at iteration " << i; } for (size_t i = 0; i < kMaxAllocations; i++) { free(ptrs[i]); } } } TEST(android_mallopt, get_decay_time_enabled_errors) { #if defined(__BIONIC__) errno = 0; EXPECT_FALSE(android_mallopt(M_GET_DECAY_TIME_ENABLED, nullptr, sizeof(bool))); EXPECT_ERRNO(EINVAL); errno = 0; int value; EXPECT_FALSE(android_mallopt(M_GET_DECAY_TIME_ENABLED, &value, sizeof(value))); EXPECT_ERRNO(EINVAL); #else GTEST_SKIP() << "bionic-only test"; #endif } TEST(android_mallopt, get_decay_time_enabled) { #if defined(__BIONIC__) SKIP_WITH_HWASAN << "hwasan does not implement mallopt"; EXPECT_EQ(1, mallopt(M_DECAY_TIME, 0)); bool value; EXPECT_TRUE(android_mallopt(M_GET_DECAY_TIME_ENABLED, &value, sizeof(value))); EXPECT_FALSE(value); EXPECT_EQ(1, mallopt(M_DECAY_TIME, 1)); EXPECT_TRUE(android_mallopt(M_GET_DECAY_TIME_ENABLED, &value, sizeof(value))); EXPECT_TRUE(value); EXPECT_EQ(1, mallopt(M_DECAY_TIME, -1)); EXPECT_TRUE(android_mallopt(M_GET_DECAY_TIME_ENABLED, &value, sizeof(value))); EXPECT_FALSE(value); #else GTEST_SKIP() << "bionic-only test"; #endif }