summaryrefslogtreecommitdiff
path: root/apps/CameraITS/utils/its_session_utils.py
blob: 3289b9102100f8ea0d45c5b98a3d887fec78d538 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
# Copyright 2013 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utility functions to form an ItsSession and perform various camera actions.
"""


import collections
import json
import logging
import math
import os
import socket
import subprocess
import sys
import time
import unicodedata
import unittest

import numpy

import camera_properties_utils
import capture_request_utils
import error_util
import image_processing_utils
import opencv_processing_utils

LOAD_SCENE_DELAY_SEC = 3
SUB_CAMERA_SEPARATOR = '.'
_VALIDATE_LIGHTING_PATCH_H = 0.05
_VALIDATE_LIGHTING_PATCH_W = 0.05
_VALIDATE_LIGHTING_REGIONS = {
    'top-left': (0, 0),
    'top-right': (0, 1-_VALIDATE_LIGHTING_PATCH_H),
    'bottom-left': (1-_VALIDATE_LIGHTING_PATCH_W, 0),
    'bottom-right': (1-_VALIDATE_LIGHTING_PATCH_W,
                     1-_VALIDATE_LIGHTING_PATCH_H),
}
_VALIDATE_LIGHTING_THRESH = 0.05  # Determined empirically from scene[1:6] tests


class ItsSession(object):
  """Controls a device over adb to run ITS scripts.

    The script importing this module (on the host machine) prepares JSON
    objects encoding CaptureRequests, specifying sets of parameters to use
    when capturing an image using the Camera2 APIs. This class encapsulates
    sending the requests to the device, monitoring the device's progress, and
    copying the resultant captures back to the host machine when done. TCP
    forwarded over adb is the transport mechanism used.

    The device must have CtsVerifier.apk installed.

    Attributes:
        sock: The open socket.
  """

  # Open a connection to localhost:<host_port>, forwarded to port 6000 on the
  # device. <host_port> is determined at run-time to support multiple
  # connected devices.
  IPADDR = '127.0.0.1'
  REMOTE_PORT = 6000
  BUFFER_SIZE = 4096

  # LOCK_PORT is used as a mutex lock to protect the list of forwarded ports
  # among all processes. The script assumes LOCK_PORT is available and will
  # try to use ports between CLIENT_PORT_START and
  # CLIENT_PORT_START+MAX_NUM_PORTS-1 on host for ITS sessions.
  CLIENT_PORT_START = 6000
  MAX_NUM_PORTS = 100
  LOCK_PORT = CLIENT_PORT_START + MAX_NUM_PORTS

  # Seconds timeout on each socket operation.
  SOCK_TIMEOUT = 20.0
  # Additional timeout in seconds when ITS service is doing more complicated
  # operations, for example: issuing warmup requests before actual capture.
  EXTRA_SOCK_TIMEOUT = 5.0

  PACKAGE = 'com.android.cts.verifier.camera.its'
  INTENT_START = 'com.android.cts.verifier.camera.its.START'

  # This string must be in sync with ItsService. Updated when interface
  # between script and ItsService is changed.
  ITS_SERVICE_VERSION = '1.0'

  SEC_TO_NSEC = 1000*1000*1000.0
  adb = 'adb -d'

  # Predefine camera props. Save props extracted from the function,
  # "get_camera_properties".
  props = None

  IMAGE_FORMAT_LIST_1 = [
      'jpegImage', 'rawImage', 'raw10Image', 'raw12Image', 'rawStatsImage',
      'dngImage', 'y8Image'
  ]

  IMAGE_FORMAT_LIST_2 = [
      'jpegImage', 'rawImage', 'raw10Image', 'raw12Image', 'rawStatsImage',
      'yuvImage'
  ]

  CAP_JPEG = {'format': 'jpeg'}
  CAP_RAW = {'format': 'raw'}
  CAP_YUV = {'format': 'yuv'}
  CAP_RAW_YUV = [{'format': 'raw'}, {'format': 'yuv'}]

  def __init_socket_port(self):
    """Initialize the socket port for the host to forward requests to the device.

    This method assumes localhost's LOCK_PORT is available and will try to
    use ports between CLIENT_PORT_START and CLIENT_PORT_START+MAX_NUM_PORTS-1
    """
    num_retries = 100
    retry_wait_time_sec = 0.05

    # Bind a socket to use as mutex lock
    socket_lock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    for i in range(num_retries):
      try:
        socket_lock.bind((ItsSession.IPADDR, ItsSession.LOCK_PORT))
        break
      except (socket.error, socket.timeout):
        if i == num_retries - 1:
          raise error_util.CameraItsError(self._device_id,
                                          'socket lock returns error')
        else:
          time.sleep(retry_wait_time_sec)

    # Check if a port is already assigned to the device.
    command = 'adb forward --list'
    proc = subprocess.Popen(command.split(), stdout=subprocess.PIPE)
    # pylint: disable=unused-variable
    output, error = proc.communicate()
    port = None
    used_ports = []
    for line  in output.decode('utf-8').split(os.linesep):
      # each line should be formatted as:
      # "<device_id> tcp:<host_port> tcp:<remote_port>"
      forward_info = line.split()
      if len(forward_info) >= 3 and len(
          forward_info[1]) > 4 and forward_info[1][:4] == 'tcp:' and len(
              forward_info[2]) > 4 and forward_info[2][:4] == 'tcp:':
        local_p = int(forward_info[1][4:])
        remote_p = int(forward_info[2][4:])
        if forward_info[
            0] == self._device_id and remote_p == ItsSession.REMOTE_PORT:
          port = local_p
          break
        else:
          used_ports.append(local_p)

      # Find the first available port if no port is assigned to the device.
    if port is None:
      for p in range(ItsSession.CLIENT_PORT_START,
                     ItsSession.CLIENT_PORT_START + ItsSession.MAX_NUM_PORTS):
        if self.check_port_availability(p, used_ports):
          port = p
          break

    if port is None:
      raise error_util.CameraItsError(self._device_id,
                                      ' cannot find an available ' + 'port')

    # Release the socket as mutex unlock
    socket_lock.close()

    # Connect to the socket
    self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    self.sock.connect((self.IPADDR, port))
    self.sock.settimeout(self.SOCK_TIMEOUT)

  def check_port_availability(self, check_port, used_ports):
    """Check if the port is available or not.

    Args:
      check_port: Port to check for availability
      used_ports: List of used ports

    Returns:
     True if the given port is available and can be assigned to the device.
    """
    if check_port not in used_ports:
      # Try to run "adb forward" with the port
      command = '%s forward tcp:%d tcp:%d' % \
                       (self.adb, check_port, self.REMOTE_PORT)
      proc = subprocess.Popen(
          command.split(), stdout=subprocess.PIPE, stderr=subprocess.PIPE)
      error = proc.communicate()[1]

      # Check if there is no error
      if error is None or error.find('error'.encode()) < 0:
        return True
      else:
        return False

  def __wait_for_service(self):
    """Wait for ItsService to be ready and reboot the device if needed.

    This also includes the optional reboot handling: if the user
    provides a "reboot" or "reboot=N" arg, then reboot the device,
    waiting for N seconds (default 30) before returning.
    """

    for s in sys.argv[1:]:
      if s[:6] == 'reboot':
        duration = 30
        if len(s) > 7 and s[6] == '=':
          duration = int(s[7:])
        logging.debug('Rebooting device')
        _run('%s reboot' % (self.adb))
        _run('%s wait-for-device' % (self.adb))
        time.sleep(duration)
        logging.debug('Reboot complete')

    # Flush logcat so following code won't be misled by previous
    # 'ItsService ready' log.
    _run('%s logcat -c' % (self.adb))
    time.sleep(1)

    _run('%s shell am force-stop --user 0 %s' % (self.adb, self.PACKAGE))
    _run(('%s shell am start-foreground-service --user 0 -t text/plain '
          '-a %s') % (self.adb, self.INTENT_START))

    # Wait until the socket is ready to accept a connection.
    proc = subprocess.Popen(
        self.adb.split() + ['logcat'], stdout=subprocess.PIPE)
    logcat = proc.stdout
    while True:
      line = logcat.readline().strip()
      if line.find(b'ItsService ready') >= 0:
        break
    proc.kill()
    proc.communicate()

  def __init__(self, device_id=None, camera_id=None, hidden_physical_id=None):
    self._camera_id = camera_id
    self._device_id = device_id
    self._hidden_physical_id = hidden_physical_id

    # Initialize device id and adb command.
    self.adb = 'adb -s ' + self._device_id
    self.__wait_for_service()
    self.__init_socket_port()

  def __enter__(self):
    self.__close_camera()
    self.__open_camera()
    return self

  def __exit__(self, exec_type, exec_value, exec_traceback):
    if hasattr(self, 'sock') and self.sock:
      self.__close_camera()
      self.sock.close()
    return False

  def override_with_hidden_physical_camera_props(self, props):
    """Check that it is a valid sub-camera backing the logical camera.

    If current session is for a hidden physical camera, check that it is a valid
    sub-camera backing the logical camera, override self.props, and return the
    characteristics of sub-camera. Otherwise, return "props" directly.

    Args:
     props: Camera properties object.

    Returns:
     The properties of the hidden physical camera if possible.
    """
    if self._hidden_physical_id:
      if not camera_properties_utils.logical_multi_camera(props):
        raise AssertionError(f'{self._camera_id} is not a logical multi-camera')
      physical_ids = camera_properties_utils.logical_multi_camera_physical_ids(
          props)
      if self._hidden_physical_id not in physical_ids:
        raise AssertionError(f'{self._hidden_physical_id} is not a hidden '
                             f'sub-camera of {self._camera_id}')
      props = self.get_camera_properties_by_id(self._hidden_physical_id)
      self.props = props
    return props

  def get_camera_properties(self):
    """Get the camera properties object for the device.

    Returns:
     The Python dictionary object for the CameraProperties object.
    """
    cmd = {}
    cmd['cmdName'] = 'getCameraProperties'
    self.sock.send(json.dumps(cmd).encode() + '\n'.encode())
    data, _ = self.__read_response_from_socket()
    if data['tag'] != 'cameraProperties':
      raise error_util.CameraItsError('Invalid command response')
    self.props = data['objValue']['cameraProperties']
    return data['objValue']['cameraProperties']

  def get_camera_properties_by_id(self, camera_id):
    """Get the camera properties object for device with camera_id.

    Args:
     camera_id: The ID string of the camera

    Returns:
     The Python dictionary object for the CameraProperties object. Empty
     if no such device exists.
    """
    cmd = {}
    cmd['cmdName'] = 'getCameraPropertiesById'
    cmd['cameraId'] = camera_id
    self.sock.send(json.dumps(cmd).encode() + '\n'.encode())
    data, _ = self.__read_response_from_socket()
    if data['tag'] != 'cameraProperties':
      raise error_util.CameraItsError('Invalid command response')
    return data['objValue']['cameraProperties']

  def __read_response_from_socket(self):
    """Reads a line (newline-terminated) string serialization of JSON object.

    Returns:
     Deserialized json obj.
    """
    chars = []
    while not chars or chars[-1] != '\n':
      ch = self.sock.recv(1).decode('utf-8')
      if not ch:
        # Socket was probably closed; otherwise don't get empty strings
        raise error_util.CameraItsError('Problem with socket on device side')
      chars.append(ch)
    line = ''.join(chars)
    jobj = json.loads(line)
    # Optionally read a binary buffer of a fixed size.
    buf = None
    if 'bufValueSize' in jobj:
      n = jobj['bufValueSize']
      buf = bytearray(n)
      view = memoryview(buf)
      while n > 0:
        nbytes = self.sock.recv_into(view, n)
        view = view[nbytes:]
        n -= nbytes
      buf = numpy.frombuffer(buf, dtype=numpy.uint8)
    return jobj, buf

  def __open_camera(self):
    """Get the camera ID to open if it is an argument as a single camera.

    This allows passing camera=# to individual tests at command line
    and camera=#,#,# or an no camera argv with tools/run_all_tests.py.
    In case the camera is a logical multi-camera, to run ITS on the
    hidden physical sub-camera, pass camera=[logical ID]:[physical ID]
    to an individual test at the command line, and same applies to multiple
    camera IDs for tools/run_all_tests.py: camera=#,#:#,#:#,#
    """
    if not self._camera_id:
      self._camera_id = 0
      for s in sys.argv[1:]:
        if s[:7] == 'camera=' and len(s) > 7:
          camera_ids = s[7:].split(',')
          camera_id_combos = parse_camera_ids(camera_ids)
          if len(camera_id_combos) == 1:
            self._camera_id = camera_id_combos[0].id
            self._hidden_physical_id = camera_id_combos[0].sub_id

    logging.debug('Opening camera: %s', self._camera_id)
    cmd = {'cmdName': 'open', 'cameraId': self._camera_id}
    self.sock.send(json.dumps(cmd).encode() + '\n'.encode())
    data, _ = self.__read_response_from_socket()
    if data['tag'] != 'cameraOpened':
      raise error_util.CameraItsError('Invalid command response')

  def __close_camera(self):
    cmd = {'cmdName': 'close'}
    self.sock.send(json.dumps(cmd).encode() + '\n'.encode())
    data, _ = self.__read_response_from_socket()
    if data['tag'] != 'cameraClosed':
      raise error_util.CameraItsError('Invalid command response')

  def get_sensors(self):
    """Get all sensors on the device.

    Returns:
       A Python dictionary that returns keys and booleans for each sensor.
    """
    cmd = {}
    cmd['cmdName'] = 'checkSensorExistence'
    self.sock.send(json.dumps(cmd).encode() + '\n'.encode())
    data, _ = self.__read_response_from_socket()
    if data['tag'] != 'sensorExistence':
      raise error_util.CameraItsError('Invalid response for command: %s' %
                                      cmd['cmdName'])
    return data['objValue']

  def start_sensor_events(self):
    """Start collecting sensor events on the device.

    See get_sensor_events for more info.

    Returns:
       Nothing.
    """
    cmd = {}
    cmd['cmdName'] = 'startSensorEvents'
    self.sock.send(json.dumps(cmd).encode() + '\n'.encode())
    data, _ = self.__read_response_from_socket()
    if data['tag'] != 'sensorEventsStarted':
      raise error_util.CameraItsError('Invalid response for command: %s' %
                                      cmd['cmdName'])

  def get_sensor_events(self):
    """Get a trace of all sensor events on the device.

        The trace starts when the start_sensor_events function is called. If
        the test runs for a long time after this call, then the device's
        internal memory can fill up. Calling get_sensor_events gets all events
        from the device, and then stops the device from collecting events and
        clears the internal buffer; to start again, the start_sensor_events
        call must be used again.

        Events from the accelerometer, compass, and gyro are returned; each
        has a timestamp and x,y,z values.

        Note that sensor events are only produced if the device isn't in its
        standby mode (i.e.) if the screen is on.

    Returns:
            A Python dictionary with three keys ("accel", "mag", "gyro") each
            of which maps to a list of objects containing "time","x","y","z"
            keys.
    """
    cmd = {}
    cmd['cmdName'] = 'getSensorEvents'
    self.sock.send(json.dumps(cmd).encode() + '\n'.encode())
    timeout = self.SOCK_TIMEOUT + self.EXTRA_SOCK_TIMEOUT
    self.sock.settimeout(timeout)
    data, _ = self.__read_response_from_socket()
    if data['tag'] != 'sensorEvents':
      raise error_util.CameraItsError('Invalid response for command: %s ' %
                                      cmd['cmdName'])
    self.sock.settimeout(self.SOCK_TIMEOUT)
    return data['objValue']

  def do_capture(self,
                 cap_request,
                 out_surfaces=None,
                 reprocess_format=None,
                 repeat_request=None):
    """Issue capture request(s), and read back the image(s) and metadata.

    The main top-level function for capturing one or more images using the
    device. Captures a single image if cap_request is a single object, and
    captures a burst if it is a list of objects.

    The optional repeat_request field can be used to assign a repeating
    request list ran in background for 3 seconds to warm up the capturing
    pipeline before start capturing. The repeat_requests will be ran on a
    640x480 YUV surface without sending any data back. The caller needs to
    make sure the stream configuration defined by out_surfaces and
    repeat_request are valid or do_capture may fail because device does not
    support such stream configuration.

    The out_surfaces field can specify the width(s), height(s), and
    format(s) of the captured image. The formats may be "yuv", "jpeg",
    "dng", "raw", "raw10", "raw12", "rawStats" or "y8". The default is a
    YUV420 frame ("yuv") corresponding to a full sensor frame.

    Optionally the out_surfaces field can specify physical camera id(s) if
    the current camera device is a logical multi-camera. The physical camera
    id must refer to a physical camera backing this logical camera device.

    Note that one or more surfaces can be specified, allowing a capture to
    request images back in multiple formats (e.g.) raw+yuv, raw+jpeg,
    yuv+jpeg, raw+yuv+jpeg. If the size is omitted for a surface, the
    default is the largest resolution available for the format of that
    surface. At most one output surface can be specified for a given format,
    and raw+dng, raw10+dng, and raw+raw10 are not supported as combinations.

    If reprocess_format is not None, for each request, an intermediate
    buffer of the given reprocess_format will be captured from camera and
    the intermediate buffer will be reprocessed to the output surfaces. The
    following settings will be turned off when capturing the intermediate
    buffer and will be applied when reprocessing the intermediate buffer.
    1. android.noiseReduction.mode
    2. android.edge.mode
    3. android.reprocess.effectiveExposureFactor

    Supported reprocess format are "yuv" and "private". Supported output
    surface formats when reprocessing is enabled are "yuv" and "jpeg".

    Example of a single capture request:

    {
     "android.sensor.exposureTime": 100*1000*1000,
     "android.sensor.sensitivity": 100
    }

    Example of a list of capture requests:
    [
     {
       "android.sensor.exposureTime": 100*1000*1000,
       "android.sensor.sensitivity": 100
     },
    {
      "android.sensor.exposureTime": 100*1000*1000,
       "android.sensor.sensitivity": 200
     }
    ]

    Example of output surface specifications:
    {
     "width": 640,
     "height": 480,
     "format": "yuv"
    }
    [
     {
       "format": "jpeg"
     },
     {
       "format": "raw"
     }
    ]

    The following variables defined in this class are shortcuts for
    specifying one or more formats where each output is the full size for
    that format; they can be used as values for the out_surfaces arguments:

    CAP_RAW
    CAP_DNG
    CAP_YUV
    CAP_JPEG
    CAP_RAW_YUV
    CAP_DNG_YUV
    CAP_RAW_JPEG
    CAP_DNG_JPEG
    CAP_YUV_JPEG
    CAP_RAW_YUV_JPEG
    CAP_DNG_YUV_JPEG

    If multiple formats are specified, then this function returns multiple
    capture objects, one for each requested format. If multiple formats and
    multiple captures (i.e. a burst) are specified, then this function
    returns multiple lists of capture objects. In both cases, the order of
    the returned objects matches the order of the requested formats in the
    out_surfaces parameter. For example:

    yuv_cap = do_capture(req1)
    yuv_cap = do_capture(req1,yuv_fmt)
    yuv_cap, raw_cap = do_capture(req1, [yuv_fmt,raw_fmt])
    yuv_caps = do_capture([req1,req2], yuv_fmt)
    yuv_caps, raw_caps = do_capture([req1,req2], [yuv_fmt,raw_fmt])

    The "rawStats" format processes the raw image and returns a new image
    of statistics from the raw image. The format takes additional keys,
    "gridWidth" and "gridHeight" which are size of grid cells in a 2D grid
    of the raw image. For each grid cell, the mean and variance of each raw
    channel is computed, and the do_capture call returns two 4-element float
    images of dimensions (rawWidth / gridWidth, rawHeight / gridHeight),
    concatenated back-to-back, where the first image contains the 4-channel
    means and the second contains the 4-channel variances. Note that only
    pixels in the active array crop region are used; pixels outside this
    region (for example optical black rows) are cropped out before the
    gridding and statistics computation is performed.

    For the rawStats format, if the gridWidth is not provided then the raw
    image width is used as the default, and similarly for gridHeight. With
    this, the following is an example of a output description that computes
    the mean and variance across each image row:
    {
      "gridHeight": 1,
      "format": "rawStats"
    }

    Args:
      cap_request: The Python dict/list specifying the capture(s), which will be
        converted to JSON and sent to the device.
      out_surfaces: (Optional) specifications of the output image formats and
        sizes to use for each capture.
      reprocess_format: (Optional) The reprocessing format. If not
        None,reprocessing will be enabled.
      repeat_request: Repeating request list.

    Returns:
      An object, list of objects, or list of lists of objects, where each
      object contains the following fields:
      * data: the image data as a numpy array of bytes.
      * width: the width of the captured image.
      * height: the height of the captured image.
      * format: image the format, in [
                        "yuv","jpeg","raw","raw10","raw12","rawStats","dng"].
      * metadata: the capture result object (Python dictionary).
    """
    cmd = {}
    if reprocess_format is not None:
      if repeat_request is not None:
        raise error_util.CameraItsError(
            'repeating request + reprocessing is not supported')
      cmd['cmdName'] = 'doReprocessCapture'
      cmd['reprocessFormat'] = reprocess_format
    else:
      cmd['cmdName'] = 'doCapture'

    if repeat_request is None:
      cmd['repeatRequests'] = []
    elif not isinstance(repeat_request, list):
      cmd['repeatRequests'] = [repeat_request]
    else:
      cmd['repeatRequests'] = repeat_request

    if not isinstance(cap_request, list):
      cmd['captureRequests'] = [cap_request]
    else:
      cmd['captureRequests'] = cap_request

    if out_surfaces is not None:
      if not isinstance(out_surfaces, list):
        cmd['outputSurfaces'] = [out_surfaces]
      else:
        cmd['outputSurfaces'] = out_surfaces
      formats = [
          c['format'] if 'format' in c else 'yuv' for c in cmd['outputSurfaces']
      ]
      formats = [s if s != 'jpg' else 'jpeg' for s in formats]
    else:
      max_yuv_size = capture_request_utils.get_available_output_sizes(
          'yuv', self.props)[0]
      formats = ['yuv']
      cmd['outputSurfaces'] = [{
          'format': 'yuv',
          'width': max_yuv_size[0],
          'height': max_yuv_size[1]
      }]

    ncap = len(cmd['captureRequests'])
    nsurf = 1 if out_surfaces is None else len(cmd['outputSurfaces'])

    cam_ids = []
    bufs = {}
    yuv_bufs = {}
    for i, s in enumerate(cmd['outputSurfaces']):
      if self._hidden_physical_id:
        s['physicalCamera'] = self._hidden_physical_id

      if 'physicalCamera' in s:
        cam_id = s['physicalCamera']
      else:
        cam_id = self._camera_id

      if cam_id not in cam_ids:
        cam_ids.append(cam_id)
        bufs[cam_id] = {
            'raw': [],
            'raw10': [],
            'raw12': [],
            'rawStats': [],
            'dng': [],
            'jpeg': [],
            'y8': []
        }

    for cam_id in cam_ids:
       # Only allow yuv output to multiple targets
      if cam_id == self._camera_id:
        yuv_surfaces = [
            s for s in cmd['outputSurfaces']
            if s['format'] == 'yuv' and 'physicalCamera' not in s
        ]
        formats_for_id = [
            s['format']
            for s in cmd['outputSurfaces']
            if 'physicalCamera' not in s
        ]
      else:
        yuv_surfaces = [
            s for s in cmd['outputSurfaces'] if s['format'] == 'yuv' and
            'physicalCamera' in s and s['physicalCamera'] == cam_id
        ]
        formats_for_id = [
            s['format']
            for s in cmd['outputSurfaces']
            if 'physicalCamera' in s and s['physicalCamera'] == cam_id
        ]

      n_yuv = len(yuv_surfaces)
      # Compute the buffer size of YUV targets
      yuv_maxsize_1d = 0
      for s in yuv_surfaces:
        if ('width' not in s and 'height' not in s):
          if self.props is None:
            raise error_util.CameraItsError('Camera props are unavailable')
          yuv_maxsize_2d = capture_request_utils.get_available_output_sizes(
              'yuv', self.props)[0]
          # YUV420 size = 1.5 bytes per pixel
          yuv_maxsize_1d = (yuv_maxsize_2d[0] * yuv_maxsize_2d[1] * 3) // 2
          break
      yuv_sizes = [
          (c['width'] * c['height'] * 3) // 2
          if 'width' in c and 'height' in c else yuv_maxsize_1d
          for c in yuv_surfaces
      ]
      # Currently we don't pass enough metadta from ItsService to distinguish
      # different yuv stream of same buffer size
      if len(yuv_sizes) != len(set(yuv_sizes)):
        raise error_util.CameraItsError(
            'ITS does not support yuv outputs of same buffer size')
      if len(formats_for_id) > len(set(formats_for_id)):
        if n_yuv != len(formats_for_id) - len(set(formats_for_id)) + 1:
          raise error_util.CameraItsError('Duplicate format requested')

      yuv_bufs[cam_id] = {size: [] for size in yuv_sizes}

    raw_formats = 0
    raw_formats += 1 if 'dng' in formats else 0
    raw_formats += 1 if 'raw' in formats else 0
    raw_formats += 1 if 'raw10' in formats else 0
    raw_formats += 1 if 'raw12' in formats else 0
    raw_formats += 1 if 'rawStats' in formats else 0
    if raw_formats > 1:
      raise error_util.CameraItsError('Different raw formats not supported')

    # Detect long exposure time and set timeout accordingly
    longest_exp_time = 0
    for req in cmd['captureRequests']:
      if 'android.sensor.exposureTime' in req and req[
          'android.sensor.exposureTime'] > longest_exp_time:
        longest_exp_time = req['android.sensor.exposureTime']

    extended_timeout = longest_exp_time // self.SEC_TO_NSEC + self.SOCK_TIMEOUT
    if repeat_request:
      extended_timeout += self.EXTRA_SOCK_TIMEOUT
    self.sock.settimeout(extended_timeout)

    logging.debug('Capturing %d frame%s with %d format%s [%s]', ncap,
                  's' if ncap > 1 else '', nsurf, 's' if nsurf > 1 else '',
                  ','.join(formats))
    self.sock.send(json.dumps(cmd).encode() + '\n'.encode())

    # Wait for ncap*nsurf images and ncap metadata responses.
    # Assume that captures come out in the same order as requested in
    # the burst, however individual images of different formats can come
    # out in any order for that capture.
    nbufs = 0
    mds = []
    physical_mds = []
    widths = None
    heights = None
    while nbufs < ncap * nsurf or len(mds) < ncap:
      json_obj, buf = self.__read_response_from_socket()
      if json_obj['tag'] in ItsSession.IMAGE_FORMAT_LIST_1 and buf is not None:
        fmt = json_obj['tag'][:-5]
        bufs[self._camera_id][fmt].append(buf)
        nbufs += 1
      elif json_obj['tag'] == 'yuvImage':
        buf_size = numpy.product(buf.shape)
        yuv_bufs[self._camera_id][buf_size].append(buf)
        nbufs += 1
      elif json_obj['tag'] == 'captureResults':
        mds.append(json_obj['objValue']['captureResult'])
        physical_mds.append(json_obj['objValue']['physicalResults'])
        outputs = json_obj['objValue']['outputs']
        widths = [out['width'] for out in outputs]
        heights = [out['height'] for out in outputs]
      else:
        tag_string = unicodedata.normalize('NFKD', json_obj['tag']).encode(
            'ascii', 'ignore')
        for x in ItsSession.IMAGE_FORMAT_LIST_2:
          x = bytes(x, encoding='utf-8')
          if tag_string.startswith(x):
            if x == b'yuvImage':
              physical_id = json_obj['tag'][len(x):]
              if physical_id in cam_ids:
                buf_size = numpy.product(buf.shape)
                yuv_bufs[physical_id][buf_size].append(buf)
                nbufs += 1
            else:
              physical_id = json_obj['tag'][len(x):]
              if physical_id in cam_ids:
                fmt = x[:-5].decode('UTF-8')
                bufs[physical_id][fmt].append(buf)
                nbufs += 1
    rets = []
    for j, fmt in enumerate(formats):
      objs = []
      if 'physicalCamera' in cmd['outputSurfaces'][j]:
        cam_id = cmd['outputSurfaces'][j]['physicalCamera']
      else:
        cam_id = self._camera_id

      for i in range(ncap):
        obj = {}
        obj['width'] = widths[j]
        obj['height'] = heights[j]
        obj['format'] = fmt
        if cam_id == self._camera_id:
          obj['metadata'] = mds[i]
        else:
          for physical_md in physical_mds[i]:
            if cam_id in physical_md:
              obj['metadata'] = physical_md[cam_id]
              break

        if fmt == 'yuv':
          buf_size = (widths[j] * heights[j] * 3) // 2
          obj['data'] = yuv_bufs[cam_id][buf_size][i]
        else:
          obj['data'] = bufs[cam_id][fmt][i]
        objs.append(obj)
      rets.append(objs if ncap > 1 else objs[0])
    self.sock.settimeout(self.SOCK_TIMEOUT)
    if len(rets) > 1 or (isinstance(rets[0], dict) and
                         isinstance(cap_request, list)):
      return rets
    else:
      return rets[0]

  def do_vibrate(self, pattern):
    """Cause the device to vibrate to a specific pattern.

    Args:
      pattern: Durations (ms) for which to turn on or off the vibrator.
      The first value indicates the number of milliseconds to wait
      before turning the vibrator on. The next value indicates the
      number of milliseconds for which to keep the vibrator on
      before turning it off. Subsequent values alternate between
      durations in milliseconds to turn the vibrator off or to turn
      the vibrator on.

    Returns:
      Nothing.
    """
    cmd = {}
    cmd['cmdName'] = 'doVibrate'
    cmd['pattern'] = pattern
    self.sock.send(json.dumps(cmd).encode() + '\n'.encode())
    data, _ = self.__read_response_from_socket()
    if data['tag'] != 'vibrationStarted':
      raise error_util.CameraItsError('Invalid response for command: %s' %
                                      cmd['cmdName'])

  def set_audio_restriction(self, mode):
    """Set the audio restriction mode for this camera device.

    Args:
     mode: int; the audio restriction mode. See CameraDevice.java for valid
     value.
    Returns:
     Nothing.
    """
    cmd = {}
    cmd['cmdName'] = 'setAudioRestriction'
    cmd['mode'] = mode
    self.sock.send(json.dumps(cmd).encode() + '\n'.encode())
    data, _ = self.__read_response_from_socket()
    if data['tag'] != 'audioRestrictionSet':
      raise error_util.CameraItsError('Invalid response for command: %s' %
                                      cmd['cmdName'])

  # pylint: disable=dangerous-default-value
  def do_3a(self,
            regions_ae=[[0, 0, 1, 1, 1]],
            regions_awb=[[0, 0, 1, 1, 1]],
            regions_af=[[0, 0, 1, 1, 1]],
            do_ae=True,
            do_awb=True,
            do_af=True,
            lock_ae=False,
            lock_awb=False,
            get_results=False,
            ev_comp=0,
            mono_camera=False):
    """Perform a 3A operation on the device.

    Triggers some or all of AE, AWB, and AF, and returns once they have
    converged. Uses the vendor 3A that is implemented inside the HAL.
    Note: do_awb is always enabled regardless of do_awb flag

    Throws an assertion if 3A fails to converge.

    Args:
      regions_ae: List of weighted AE regions.
      regions_awb: List of weighted AWB regions.
      regions_af: List of weighted AF regions.
      do_ae: Trigger AE and wait for it to converge.
      do_awb: Wait for AWB to converge.
      do_af: Trigger AF and wait for it to converge.
      lock_ae: Request AE lock after convergence, and wait for it.
      lock_awb: Request AWB lock after convergence, and wait for it.
      get_results: Return the 3A results from this function.
      ev_comp: An EV compensation value to use when running AE.
      mono_camera: Boolean for monochrome camera.

      Region format in args:
         Arguments are lists of weighted regions; each weighted region is a
         list of 5 values, [x, y, w, h, wgt], and each argument is a list of
         these 5-value lists. The coordinates are given as normalized
         rectangles (x, y, w, h) specifying the region. For example:
         [[0.0, 0.0, 1.0, 0.5, 5], [0.0, 0.5, 1.0, 0.5, 10]].
         Weights are non-negative integers.

    Returns:
      Five values are returned if get_results is true:
      * AE sensitivity; None if do_ae is False
      * AE exposure time; None if do_ae is False
      * AWB gains (list);
      * AWB transform (list);
      * AF focus position; None if do_af is false
      Otherwise, it returns five None values.
    """
    logging.debug('Running vendor 3A on device')
    cmd = {}
    cmd['cmdName'] = 'do3A'
    cmd['regions'] = {
        'ae': sum(regions_ae, []),
        'awb': sum(regions_awb, []),
        'af': sum(regions_af, [])
    }
    cmd['triggers'] = {'ae': do_ae, 'af': do_af}
    if lock_ae:
      cmd['aeLock'] = True
    if lock_awb:
      cmd['awbLock'] = True
    if ev_comp != 0:
      cmd['evComp'] = ev_comp
    if self._hidden_physical_id:
      cmd['physicalId'] = self._hidden_physical_id
    self.sock.send(json.dumps(cmd).encode() + '\n'.encode())

    # Wait for each specified 3A to converge.
    ae_sens = None
    ae_exp = None
    awb_gains = None
    awb_transform = None
    af_dist = None
    converged = False
    while True:
      data, _ = self.__read_response_from_socket()
      vals = data['strValue'].split()
      if data['tag'] == 'aeResult':
        if do_ae:
          ae_sens, ae_exp = [int(i) for i in vals]
      elif data['tag'] == 'afResult':
        if do_af:
          af_dist = float(vals[0])
      elif data['tag'] == 'awbResult':
        awb_gains = [float(f) for f in vals[:4]]
        awb_transform = [float(f) for f in vals[4:]]
      elif data['tag'] == '3aConverged':
        converged = True
      elif data['tag'] == '3aDone':
        break
      else:
        raise error_util.CameraItsError('Invalid command response')
    if converged and not get_results:
      return None, None, None, None, None
    if (do_ae and ae_sens is None or
        (not mono_camera and do_awb and awb_gains is None) or
        do_af and af_dist is None or not converged):
      raise error_util.CameraItsError('3A failed to converge')
    return ae_sens, ae_exp, awb_gains, awb_transform, af_dist

  def calc_camera_fov(self, props):
    """Determine the camera field of view from internal params.

    Args:
      props: Camera properties object.

    Returns:
      camera_fov: string; field of view for camera.
    """

    focal_ls = props['android.lens.info.availableFocalLengths']
    if len(focal_ls) > 1:
      logging.debug('Doing capture to determine logical camera focal length')
      cap = self.do_capture(capture_request_utils.auto_capture_request())
      focal_l = cap['metadata']['android.lens.focalLength']
    else:
      focal_l = focal_ls[0]

    sensor_size = props['android.sensor.info.physicalSize']
    diag = math.sqrt(sensor_size['height']**2 + sensor_size['width']**2)
    try:
      fov = str(round(2 * math.degrees(math.atan(diag / (2 * focal_l))), 2))
    except ValueError:
      fov = str(0)
    logging.debug('Calculated FoV: %s', fov)
    return fov

  def get_file_name_to_load(self, chart_distance, camera_fov, scene):
    """Get the image to load on the tablet depending on fov and chart_distance.

    Args:
     chart_distance: float; distance in cm from camera of displayed chart
     camera_fov: float; camera field of view.
     scene: String; Scene to be used in the test.

    Returns:
     file_name: file name to display on the tablet.

    """
    chart_scaling = opencv_processing_utils.calc_chart_scaling(
        chart_distance, camera_fov)
    if numpy.isclose(
        chart_scaling,
        opencv_processing_utils.SCALE_RFOV_IN_WFOV_BOX,
        atol=0.01):
      file_name = '%s_%sx_scaled.png' % (
          scene, str(opencv_processing_utils.SCALE_RFOV_IN_WFOV_BOX))
    elif numpy.isclose(
        chart_scaling,
        opencv_processing_utils.SCALE_TELE_IN_WFOV_BOX,
        atol=0.01):
      file_name = '%s_%sx_scaled.png' % (
          scene, str(opencv_processing_utils.SCALE_TELE_IN_WFOV_BOX))
    elif numpy.isclose(
        chart_scaling,
        opencv_processing_utils.SCALE_TELE25_IN_RFOV_BOX,
        atol=0.01):
      file_name = '%s_%sx_scaled.png' % (
          scene, str(opencv_processing_utils.SCALE_TELE25_IN_RFOV_BOX))
    elif numpy.isclose(
        chart_scaling,
        opencv_processing_utils.SCALE_TELE40_IN_RFOV_BOX,
        atol=0.01):
      file_name = '%s_%sx_scaled.png' % (
          scene, str(opencv_processing_utils.SCALE_TELE40_IN_RFOV_BOX))
    elif numpy.isclose(
        chart_scaling,
        opencv_processing_utils.SCALE_TELE_IN_RFOV_BOX,
        atol=0.01):
      file_name = '%s_%sx_scaled.png' % (
          scene, str(opencv_processing_utils.SCALE_TELE_IN_RFOV_BOX))
    else:
      file_name = '%s.png' % scene
    logging.debug('Scene to load: %s', file_name)
    return file_name

  def is_stream_combination_supported(self, out_surfaces):
    """Query whether out_surfaces combination is supported by the camera device.

    This function hooks up to the isSessionConfigurationSupported() camera API
    to query whether a particular stream combination is supported.

    Args:
      out_surfaces: dict; see do_capture() for specifications on out_surfaces

    Returns:
      Boolean
    """
    cmd = {}
    cmd['cmdName'] = 'isStreamCombinationSupported'

    if not isinstance(out_surfaces, list):
      cmd['outputSurfaces'] = [out_surfaces]
    else:
      cmd['outputSurfaces'] = out_surfaces
    formats = [c['format'] if 'format' in c else 'yuv'
               for c in cmd['outputSurfaces']]
    formats = [s if s != 'jpg' else 'jpeg' for s in formats]

    self.sock.send(json.dumps(cmd).encode() + '\n'.encode())

    data, _ = self.__read_response_from_socket()
    if data['tag'] != 'streamCombinationSupport':
      raise error_util.CameraItsError('Failed to query stream combination')

    return data['strValue'] == 'supportedCombination'

  def is_camera_privacy_mode_supported(self):
    """Query whether the mobile device supports camera privacy mode.

    This function checks whether the mobile device has FEATURE_CAMERA_TOGGLE
    feature support, which indicates the camera device can run in privacy mode.

    Returns:
      Boolean
    """
    cmd = {}
    cmd['cmdName'] = 'isCameraPrivacyModeSupported'
    self.sock.send(json.dumps(cmd).encode() + '\n'.encode())

    data, _ = self.__read_response_from_socket()
    if data['tag'] != 'cameraPrivacyModeSupport':
      raise error_util.CameraItsError('Failed to query camera privacy mode'
                                      ' support')
    return data['strValue'] == 'true'

  def get_performance_class_level(self):
    """Query whether the camera device is an R or S performance class primary camera.

    A primary rear/front facing camera is a camera device with the lowest
    camera Id for that facing.

    Returns:
      Performance class level in integer. R: 11. S: 12.
    """
    cmd = {}
    cmd['cmdName'] = 'getPerformanceClassLevel'
    cmd['cameraId'] = self._camera_id
    self.sock.send(json.dumps(cmd).encode() + '\n'.encode())

    data, _ = self.__read_response_from_socket()
    if data['tag'] != 'performanceClassLevel':
      raise error_util.CameraItsError('Failed to query performance class level')
    return int(data['strValue'])

  def measure_camera_launch_ms(self):
    """Measure camera launch latency in millisecond, from open to first frame.

    Returns:
      Camera launch latency from camera open to receipt of first frame
    """
    cmd = {}
    cmd['cmdName'] = 'measureCameraLaunchMs'
    cmd['cameraId'] = self._camera_id
    self.sock.send(json.dumps(cmd).encode() + '\n'.encode())

    data, _ = self.__read_response_from_socket()
    if data['tag'] != 'cameraLaunchMs':
      raise error_util.CameraItsError('Failed to measure camera launch latency')
    return float(data['strValue'])

  def measure_camera_1080p_jpeg_capture_ms(self):
    """Measure camera 1080P jpeg capture latency in milliseconds.

    Returns:
      Camera jpeg capture latency in milliseconds
    """
    cmd = {}
    cmd['cmdName'] = 'measureCamera1080pJpegCaptureMs'
    cmd['cameraId'] = self._camera_id
    self.sock.send(json.dumps(cmd).encode() + '\n'.encode())

    data, _ = self.__read_response_from_socket()
    if data['tag'] != 'camera1080pJpegCaptureMs':
      raise error_util.CameraItsError(
          'Failed to measure camera 1080p jpeg capture latency')
    return float(data['strValue'])


def parse_camera_ids(ids):
  """Parse the string of camera IDs into array of CameraIdCombo tuples.

  Args:
   ids: List of camera ids.

  Returns:
   Array of CameraIdCombo
  """
  camera_id_combo = collections.namedtuple('CameraIdCombo', ['id', 'sub_id'])
  id_combos = []
  for one_id in ids:
    one_combo = one_id.split(SUB_CAMERA_SEPARATOR)
    if len(one_combo) == 1:
      id_combos.append(camera_id_combo(one_combo[0], None))
    elif len(one_combo) == 2:
      id_combos.append(camera_id_combo(one_combo[0], one_combo[1]))
    else:
      raise AssertionError('Camera id parameters must be either ID or '
                           f'ID{SUB_CAMERA_SEPARATOR}SUB_ID')
  return id_combos


def _run(cmd):
  """Replacement for os.system, with hiding of stdout+stderr messages.

  Args:
    cmd: Command to be executed in string format.
  """
  with open(os.devnull, 'wb') as devnull:
    subprocess.check_call(cmd.split(), stdout=devnull, stderr=subprocess.STDOUT)


def do_capture_with_latency(cam, req, sync_latency, fmt=None):
  """Helper function to take enough frames to allow sync latency.

  Args:
    cam: camera object
    req: request for camera
    sync_latency: integer number of frames
    fmt: format for the capture
  Returns:
    single capture with the unsettled frames discarded
  """
  caps = cam.do_capture([req]*(sync_latency+1), fmt)
  return caps[-1]


def load_scene(cam, props, scene, tablet, chart_distance):
  """Load the scene for the camera based on the FOV.

  Args:
    cam: camera object
    props: camera properties
    scene: scene to be loaded
    tablet: tablet to load scene on
    chart_distance: distance to tablet
  """
  if not tablet:
    logging.info('Manual run: no tablet to load scene on.')
    return
  # Calculate camera_fov which will determine the image to load on tablet.
  camera_fov = cam.calc_camera_fov(props)
  file_name = cam.get_file_name_to_load(chart_distance, camera_fov, scene)
  logging.debug('Displaying %s on the tablet', file_name)
  # Display the scene on the tablet depending on camera_fov
  tablet.adb.shell(
      'am start -a android.intent.action.VIEW -t image/png '
      f'-d file://mnt/sdcard/Download/{file_name}')
  time.sleep(LOAD_SCENE_DELAY_SEC)
  rfov_camera_in_rfov_box = (
      numpy.isclose(
          chart_distance,
          opencv_processing_utils.CHART_DISTANCE_RFOV, rtol=0.1) and
      opencv_processing_utils.FOV_THRESH_TELE <= float(camera_fov)
      <= opencv_processing_utils.FOV_THRESH_WFOV)
  wfov_camera_in_wfov_box = (
      numpy.isclose(
          chart_distance,
          opencv_processing_utils.CHART_DISTANCE_WFOV, rtol=0.1) and
      float(camera_fov) > opencv_processing_utils.FOV_THRESH_WFOV)
  if rfov_camera_in_rfov_box or wfov_camera_in_wfov_box:
    cam.do_3a()
    cap = cam.do_capture(
        capture_request_utils.auto_capture_request(), cam.CAP_YUV)
    y_plane, _, _ = image_processing_utils.convert_capture_to_planes(cap)
    validate_lighting(y_plane, scene)


def validate_lighting(y_plane, scene):
  """Validates the lighting level in scene corners based on empirical values.

  Args:
    y_plane: Y plane of YUV image
    scene: scene name
  Returns:
    boolean True if lighting validated, else raise AssertionError
  """
  logging.debug('Validating lighting levels.')

  # Test patches from each corner.
  for location, coordinates in _VALIDATE_LIGHTING_REGIONS.items():
    patch = image_processing_utils.get_image_patch(
        y_plane, coordinates[0], coordinates[1],
        _VALIDATE_LIGHTING_PATCH_W, _VALIDATE_LIGHTING_PATCH_H)
    y_mean = image_processing_utils.compute_image_means(patch)[0]
    logging.debug('%s corner Y mean: %.3f', location, y_mean)
    if y_mean > _VALIDATE_LIGHTING_THRESH:
      logging.debug('Lights ON in test rig.')
      return True
  image_processing_utils.write_image(y_plane, f'validate_lighting_{scene}.jpg')
  raise AssertionError('Lights OFF in test rig. Please turn ON and retry.')


def get_build_sdk_version(device_id):
  """Return the int build version of the device."""
  cmd = 'adb -s %s shell getprop ro.build.version.sdk' % device_id
  try:
    build_sdk_version = int(subprocess.check_output(cmd.split()).rstrip())
    logging.debug('Build SDK version: %d', build_sdk_version)
  except (subprocess.CalledProcessError, ValueError):
    raise AssertionError('No build_sdk_version.')
  return build_sdk_version


def get_first_api_level(device_id):
  """Return the int value for the first API level of the device."""
  cmd = 'adb -s %s shell getprop ro.product.first_api_level' % device_id
  try:
    first_api_level = int(subprocess.check_output(cmd.split()).rstrip())
    logging.debug('First API level: %d', first_api_level)
  except (subprocess.CalledProcessError, ValueError):
    logging.error('No first_api_level. Setting to build version.')
    first_api_level = get_build_sdk_version(device_id)
  return first_api_level


class ItsSessionUtilsTests(unittest.TestCase):
  """Run a suite of unit tests on this module."""

  _BRIGHTNESS_CHECKS = (0.0,
                        _VALIDATE_LIGHTING_THRESH-0.01,
                        _VALIDATE_LIGHTING_THRESH,
                        _VALIDATE_LIGHTING_THRESH+0.01,
                        1.0)
  _TEST_IMG_W = 640
  _TEST_IMG_H = 480

  def _generate_test_image(self, brightness):
    """Creates a Y plane array with pixel values of brightness.

    Args:
      brightness: float between [0.0, 1.0]

    Returns:
      Y plane array with elements of value brightness
    """
    test_image = numpy.zeros((self._TEST_IMG_W, self._TEST_IMG_H, 1),
                             dtype=float)
    test_image.fill(brightness)
    return test_image

  def test_validate_lighting(self):
    """Tests validate_lighting() works correctly."""
    # Run with different brightnesses to validate.
    for brightness in self._BRIGHTNESS_CHECKS:
      logging.debug('Testing validate_lighting with brightness %.1f',
                    brightness)
      test_image = self._generate_test_image(brightness)
      print(f'Testing brightness: {brightness}')
      if brightness <= _VALIDATE_LIGHTING_THRESH:
        self.assertRaises(
            AssertionError, validate_lighting, test_image, 'unittest')
      else:
        self.assertTrue(validate_lighting(test_image, 'unittest'),
                        f'image value {brightness} should PASS')


if __name__ == '__main__':
  unittest.main()