summaryrefslogtreecommitdiff
path: root/core/jni/android/graphics/BitmapFactory.cpp
blob: 0a143610ebd7e4df9988838b636affdd3a177929 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
#define LOG_TAG "BitmapFactory"

#include "BitmapFactory.h"
#include "CreateJavaOutputStreamAdaptor.h"
#include "GraphicsJNI.h"
#include "NinePatchPeeker.h"
#include "SkAndroidCodec.h"
#include "SkBRDAllocator.h"
#include "SkFrontBufferedStream.h"
#include "SkImageDecoder.h"
#include "SkMath.h"
#include "SkPixelRef.h"
#include "SkStream.h"
#include "SkUtils.h"
#include "Utils.h"
#include "core_jni_helpers.h"

#include <JNIHelp.h>
#include <androidfw/Asset.h>
#include <androidfw/ResourceTypes.h>
#include <cutils/compiler.h>
#include <memory>
#include <netinet/in.h>
#include <stdio.h>
#include <sys/mman.h>
#include <sys/stat.h>

jfieldID gOptions_justBoundsFieldID;
jfieldID gOptions_sampleSizeFieldID;
jfieldID gOptions_configFieldID;
jfieldID gOptions_premultipliedFieldID;
jfieldID gOptions_mutableFieldID;
jfieldID gOptions_ditherFieldID;
jfieldID gOptions_preferQualityOverSpeedFieldID;
jfieldID gOptions_scaledFieldID;
jfieldID gOptions_densityFieldID;
jfieldID gOptions_screenDensityFieldID;
jfieldID gOptions_targetDensityFieldID;
jfieldID gOptions_widthFieldID;
jfieldID gOptions_heightFieldID;
jfieldID gOptions_mimeFieldID;
jfieldID gOptions_mCancelID;
jfieldID gOptions_bitmapFieldID;

jfieldID gBitmap_ninePatchInsetsFieldID;

jclass gInsetStruct_class;
jmethodID gInsetStruct_constructorMethodID;

using namespace android;

jstring encodedFormatToString(JNIEnv* env, SkEncodedFormat format) {
    const char* mimeType;
    switch (format) {
        case SkEncodedFormat::kBMP_SkEncodedFormat:
            mimeType = "image/bmp";
            break;
        case SkEncodedFormat::kGIF_SkEncodedFormat:
            mimeType = "image/gif";
            break;
        case SkEncodedFormat::kICO_SkEncodedFormat:
            mimeType = "image/x-ico";
            break;
        case SkEncodedFormat::kJPEG_SkEncodedFormat:
            mimeType = "image/jpeg";
            break;
        case SkEncodedFormat::kPNG_SkEncodedFormat:
            mimeType = "image/png";
            break;
        case SkEncodedFormat::kWEBP_SkEncodedFormat:
            mimeType = "image/webp";
            break;
        case SkEncodedFormat::kWBMP_SkEncodedFormat:
            mimeType = "image/vnd.wap.wbmp";
            break;
        case SkEncodedFormat::kRAW_SkEncodedFormat:
            mimeType = "image/x-adobe-dng";
            break;
        default:
            mimeType = nullptr;
            break;
    }

    jstring jstr = nullptr;
    if (mimeType) {
        // NOTE: Caller should env->ExceptionCheck() for OOM
        // (can't check for nullptr as it's a valid return value)
        jstr = env->NewStringUTF(mimeType);
    }
    return jstr;
}

static void scaleDivRange(int32_t* divs, int count, float scale, int maxValue) {
    for (int i = 0; i < count; i++) {
        divs[i] = int32_t(divs[i] * scale + 0.5f);
        if (i > 0 && divs[i] == divs[i - 1]) {
            divs[i]++; // avoid collisions
        }
    }

    if (CC_UNLIKELY(divs[count - 1] > maxValue)) {
        // if the collision avoidance above put some divs outside the bounds of the bitmap,
        // slide outer stretchable divs inward to stay within bounds
        int highestAvailable = maxValue;
        for (int i = count - 1; i >= 0; i--) {
            divs[i] = highestAvailable;
            if (i > 0 && divs[i] <= divs[i-1]){
                // keep shifting
                highestAvailable = divs[i] - 1;
            } else {
                break;
            }
        }
    }
}

static void scaleNinePatchChunk(android::Res_png_9patch* chunk, float scale,
        int scaledWidth, int scaledHeight) {
    chunk->paddingLeft = int(chunk->paddingLeft * scale + 0.5f);
    chunk->paddingTop = int(chunk->paddingTop * scale + 0.5f);
    chunk->paddingRight = int(chunk->paddingRight * scale + 0.5f);
    chunk->paddingBottom = int(chunk->paddingBottom * scale + 0.5f);

    scaleDivRange(chunk->getXDivs(), chunk->numXDivs, scale, scaledWidth);
    scaleDivRange(chunk->getYDivs(), chunk->numYDivs, scale, scaledHeight);
}

static SkColorType colorTypeForScaledOutput(SkColorType colorType) {
    switch (colorType) {
        case kUnknown_SkColorType:
        case kIndex_8_SkColorType:
            return kN32_SkColorType;
        default:
            break;
    }
    return colorType;
}

class ScaleCheckingAllocator : public SkBitmap::HeapAllocator {
public:
    ScaleCheckingAllocator(float scale, int size)
            : mScale(scale), mSize(size) {
    }

    virtual bool allocPixelRef(SkBitmap* bitmap, SkColorTable* ctable) {
        // accounts for scale in final allocation, using eventual size and config
        const int bytesPerPixel = SkColorTypeBytesPerPixel(
                colorTypeForScaledOutput(bitmap->colorType()));
        const int requestedSize = bytesPerPixel *
                int(bitmap->width() * mScale + 0.5f) *
                int(bitmap->height() * mScale + 0.5f);
        if (requestedSize > mSize) {
            ALOGW("bitmap for alloc reuse (%d bytes) can't fit scaled bitmap (%d bytes)",
                    mSize, requestedSize);
            return false;
        }
        return SkBitmap::HeapAllocator::allocPixelRef(bitmap, ctable);
    }
private:
    const float mScale;
    const int mSize;
};

class RecyclingPixelAllocator : public SkBitmap::Allocator {
public:
    RecyclingPixelAllocator(android::Bitmap* bitmap, unsigned int size)
            : mBitmap(bitmap), mSize(size) {
    }

    ~RecyclingPixelAllocator() {
    }

    virtual bool allocPixelRef(SkBitmap* bitmap, SkColorTable* ctable) {
        const SkImageInfo& info = bitmap->info();
        if (info.colorType() == kUnknown_SkColorType) {
            ALOGW("unable to reuse a bitmap as the target has an unknown bitmap configuration");
            return false;
        }

        const int64_t size64 = info.getSafeSize64(bitmap->rowBytes());
        if (!sk_64_isS32(size64)) {
            ALOGW("bitmap is too large");
            return false;
        }

        const size_t size = sk_64_asS32(size64);
        if (size > mSize) {
            ALOGW("bitmap marked for reuse (%u bytes) can't fit new bitmap "
                  "(%zu bytes)", mSize, size);
            return false;
        }

        mBitmap->reconfigure(info, bitmap->rowBytes(), ctable);
        bitmap->setPixelRef(mBitmap->refPixelRef())->unref();

        // since we're already allocated, we lockPixels right away
        // HeapAllocator/JavaPixelAllocator behaves this way too
        bitmap->lockPixels();
        return true;
    }

private:
    android::Bitmap* const mBitmap;
    const unsigned int mSize;
};

// Necessary for decodes when the native decoder cannot scale to appropriately match the sampleSize
// (for example, RAW). If the sampleSize divides evenly into the dimension, we require that the
// scale matches exactly. If sampleSize does not divide evenly, we allow the decoder to choose how
// best to round.
static bool needsFineScale(const int fullSize, const int decodedSize, const int sampleSize) {
    if (fullSize % sampleSize == 0 && fullSize / sampleSize != decodedSize) {
        return true;
    } else if ((fullSize / sampleSize + 1) != decodedSize &&
               (fullSize / sampleSize) != decodedSize) {
        return true;
    }
    return false;
}

static bool needsFineScale(const SkISize fullSize, const SkISize decodedSize,
                           const int sampleSize) {
    return needsFineScale(fullSize.width(), decodedSize.width(), sampleSize) ||
           needsFineScale(fullSize.height(), decodedSize.height(), sampleSize);
}

static jobject doDecode(JNIEnv* env, SkStreamRewindable* stream, jobject padding, jobject options) {
    // This function takes ownership of the input stream.  Since the SkAndroidCodec
    // will take ownership of the stream, we don't necessarily need to take ownership
    // here.  This is a precaution - if we were to return before creating the codec,
    // we need to make sure that we delete the stream.
    std::unique_ptr<SkStreamRewindable> streamDeleter(stream);

    // Set default values for the options parameters.
    int sampleSize = 1;
    bool onlyDecodeSize = false;
    SkColorType prefColorType = kN32_SkColorType;
    bool isMutable = false;
    float scale = 1.0f;
    bool requireUnpremultiplied = false;
    jobject javaBitmap = NULL;

    // Update with options supplied by the client.
    if (options != NULL) {
        sampleSize = env->GetIntField(options, gOptions_sampleSizeFieldID);
        // Correct a non-positive sampleSize.  sampleSize defaults to zero within the
        // options object, which is strange.
        if (sampleSize <= 0) {
            sampleSize = 1;
        }

        if (env->GetBooleanField(options, gOptions_justBoundsFieldID)) {
            onlyDecodeSize = true;
        }

        // initialize these, in case we fail later on
        env->SetIntField(options, gOptions_widthFieldID, -1);
        env->SetIntField(options, gOptions_heightFieldID, -1);
        env->SetObjectField(options, gOptions_mimeFieldID, 0);

        jobject jconfig = env->GetObjectField(options, gOptions_configFieldID);
        prefColorType = GraphicsJNI::getNativeBitmapColorType(env, jconfig);
        isMutable = env->GetBooleanField(options, gOptions_mutableFieldID);
        requireUnpremultiplied = !env->GetBooleanField(options, gOptions_premultipliedFieldID);
        javaBitmap = env->GetObjectField(options, gOptions_bitmapFieldID);

        if (env->GetBooleanField(options, gOptions_scaledFieldID)) {
            const int density = env->GetIntField(options, gOptions_densityFieldID);
            const int targetDensity = env->GetIntField(options, gOptions_targetDensityFieldID);
            const int screenDensity = env->GetIntField(options, gOptions_screenDensityFieldID);
            if (density != 0 && targetDensity != 0 && density != screenDensity) {
                scale = (float) targetDensity / density;
            }
        }
    }

    // Create the codec.
    NinePatchPeeker peeker;
    std::unique_ptr<SkAndroidCodec> codec(SkAndroidCodec::NewFromStream(streamDeleter.release(),
            &peeker));
    if (!codec.get()) {
        return nullObjectReturn("SkAndroidCodec::NewFromStream returned null");
    }

    // Do not allow ninepatch decodes to 565.  In the past, decodes to 565
    // would dither, and we do not want to pre-dither ninepatches, since we
    // know that they will be stretched.  We no longer dither 565 decodes,
    // but we continue to prevent ninepatches from decoding to 565, in order
    // to maintain the old behavior.
    if (peeker.mPatch && kRGB_565_SkColorType == prefColorType) {
        prefColorType = kN32_SkColorType;
    }

    // Determine the output size.
    SkISize size = codec->getSampledDimensions(sampleSize);

    int scaledWidth = size.width();
    int scaledHeight = size.height();
    bool willScale = false;

    // Apply a fine scaling step if necessary.
    if (needsFineScale(codec->getInfo().dimensions(), size, sampleSize)) {
        willScale = true;
        scaledWidth = codec->getInfo().width() / sampleSize;
        scaledHeight = codec->getInfo().height() / sampleSize;
    }

    // Set the options and return if the client only wants the size.
    if (options != NULL) {
        jstring mimeType = encodedFormatToString(env, codec->getEncodedFormat());
        if (env->ExceptionCheck()) {
            return nullObjectReturn("OOM in encodedFormatToString()");
        }
        env->SetIntField(options, gOptions_widthFieldID, scaledWidth);
        env->SetIntField(options, gOptions_heightFieldID, scaledHeight);
        env->SetObjectField(options, gOptions_mimeFieldID, mimeType);

        if (onlyDecodeSize) {
            return nullptr;
        }
    }

    // Scale is necessary due to density differences.
    if (scale != 1.0f) {
        willScale = true;
        scaledWidth = static_cast<int>(scaledWidth * scale + 0.5f);
        scaledHeight = static_cast<int>(scaledHeight * scale + 0.5f);
    }

    android::Bitmap* reuseBitmap = nullptr;
    unsigned int existingBufferSize = 0;
    if (javaBitmap != NULL) {
        reuseBitmap = GraphicsJNI::getBitmap(env, javaBitmap);
        if (reuseBitmap->peekAtPixelRef()->isImmutable()) {
            ALOGW("Unable to reuse an immutable bitmap as an image decoder target.");
            javaBitmap = NULL;
            reuseBitmap = nullptr;
        } else {
            existingBufferSize = GraphicsJNI::getBitmapAllocationByteCount(env, javaBitmap);
        }
    }

    JavaPixelAllocator javaAllocator(env);
    RecyclingPixelAllocator recyclingAllocator(reuseBitmap, existingBufferSize);
    ScaleCheckingAllocator scaleCheckingAllocator(scale, existingBufferSize);
    SkBitmap::HeapAllocator heapAllocator;
    SkBitmap::Allocator* decodeAllocator;
    if (javaBitmap != nullptr && willScale) {
        // This will allocate pixels using a HeapAllocator, since there will be an extra
        // scaling step that copies these pixels into Java memory.  This allocator
        // also checks that the recycled javaBitmap is large enough.
        decodeAllocator = &scaleCheckingAllocator;
    } else if (javaBitmap != nullptr) {
        decodeAllocator = &recyclingAllocator;
    } else if (willScale) {
        // This will allocate pixels using a HeapAllocator, since there will be an extra
        // scaling step that copies these pixels into Java memory.
        decodeAllocator = &heapAllocator;
    } else {
        decodeAllocator = &javaAllocator;
    }

    // Set the decode colorType.  This is necessary because we can't always support
    // the requested colorType.
    SkColorType decodeColorType = codec->computeOutputColorType(prefColorType);

    // Construct a color table for the decode if necessary
    SkAutoTUnref<SkColorTable> colorTable(nullptr);
    SkPMColor* colorPtr = nullptr;
    int* colorCount = nullptr;
    int maxColors = 256;
    SkPMColor colors[256];
    if (kIndex_8_SkColorType == decodeColorType) {
        colorTable.reset(new SkColorTable(colors, maxColors));

        // SkColorTable expects us to initialize all of the colors before creating an
        // SkColorTable.  However, we are using SkBitmap with an Allocator to allocate
        // memory for the decode, so we need to create the SkColorTable before decoding.
        // It is safe for SkAndroidCodec to modify the colors because this SkBitmap is
        // not being used elsewhere.
        colorPtr = const_cast<SkPMColor*>(colorTable->readColors());
        colorCount = &maxColors;
    }

    // Set the alpha type for the decode.
    SkAlphaType alphaType = codec->computeOutputAlphaType(requireUnpremultiplied);

    const SkImageInfo decodeInfo = SkImageInfo::Make(size.width(), size.height(), decodeColorType,
            alphaType);
    SkImageInfo bitmapInfo = decodeInfo;
    if (decodeColorType == kGray_8_SkColorType) {
        // The legacy implementation of BitmapFactory used kAlpha8 for
        // grayscale images (before kGray8 existed).  While the codec
        // recognizes kGray8, we need to decode into a kAlpha8 bitmap
        // in order to avoid a behavior change.
        bitmapInfo = SkImageInfo::MakeA8(size.width(), size.height());
    }
    SkBitmap decodingBitmap;
    if (!decodingBitmap.setInfo(bitmapInfo) ||
            !decodingBitmap.tryAllocPixels(decodeAllocator, colorTable)) {
        // SkAndroidCodec should recommend a valid SkImageInfo, so setInfo()
        // should only only fail if the calculated value for rowBytes is too
        // large.
        // tryAllocPixels() can fail due to OOM on the Java heap, OOM on the
        // native heap, or the recycled javaBitmap being too small to reuse.
        return nullptr;
    }

    // Use SkAndroidCodec to perform the decode.
    SkAndroidCodec::AndroidOptions codecOptions;
    codecOptions.fZeroInitialized = (decodeAllocator == &javaAllocator) ?
            SkCodec::kYes_ZeroInitialized : SkCodec::kNo_ZeroInitialized;
    codecOptions.fColorPtr = colorPtr;
    codecOptions.fColorCount = colorCount;
    codecOptions.fSampleSize = sampleSize;
    SkCodec::Result result = codec->getAndroidPixels(decodeInfo, decodingBitmap.getPixels(),
            decodingBitmap.rowBytes(), &codecOptions);
    switch (result) {
        case SkCodec::kSuccess:
        case SkCodec::kIncompleteInput:
            break;
        default:
            return nullObjectReturn("codec->getAndroidPixels() failed.");
    }

    jbyteArray ninePatchChunk = NULL;
    if (peeker.mPatch != NULL) {
        if (willScale) {
            scaleNinePatchChunk(peeker.mPatch, scale, scaledWidth, scaledHeight);
        }

        size_t ninePatchArraySize = peeker.mPatch->serializedSize();
        ninePatchChunk = env->NewByteArray(ninePatchArraySize);
        if (ninePatchChunk == NULL) {
            return nullObjectReturn("ninePatchChunk == null");
        }

        jbyte* array = (jbyte*) env->GetPrimitiveArrayCritical(ninePatchChunk, NULL);
        if (array == NULL) {
            return nullObjectReturn("primitive array == null");
        }

        memcpy(array, peeker.mPatch, peeker.mPatchSize);
        env->ReleasePrimitiveArrayCritical(ninePatchChunk, array, 0);
    }

    jobject ninePatchInsets = NULL;
    if (peeker.mHasInsets) {
        ninePatchInsets = env->NewObject(gInsetStruct_class, gInsetStruct_constructorMethodID,
                peeker.mOpticalInsets[0], peeker.mOpticalInsets[1], peeker.mOpticalInsets[2], peeker.mOpticalInsets[3],
                peeker.mOutlineInsets[0], peeker.mOutlineInsets[1], peeker.mOutlineInsets[2], peeker.mOutlineInsets[3],
                peeker.mOutlineRadius, peeker.mOutlineAlpha, scale);
        if (ninePatchInsets == NULL) {
            return nullObjectReturn("nine patch insets == null");
        }
        if (javaBitmap != NULL) {
            env->SetObjectField(javaBitmap, gBitmap_ninePatchInsetsFieldID, ninePatchInsets);
        }
    }

    SkBitmap outputBitmap;
    if (willScale) {
        // This is weird so let me explain: we could use the scale parameter
        // directly, but for historical reasons this is how the corresponding
        // Dalvik code has always behaved. We simply recreate the behavior here.
        // The result is slightly different from simply using scale because of
        // the 0.5f rounding bias applied when computing the target image size
        const float sx = scaledWidth / float(decodingBitmap.width());
        const float sy = scaledHeight / float(decodingBitmap.height());

        // Set the allocator for the outputBitmap.
        SkBitmap::Allocator* outputAllocator;
        if (javaBitmap != nullptr) {
            outputAllocator = &recyclingAllocator;
        } else {
            outputAllocator = &javaAllocator;
        }

        SkColorType scaledColorType = colorTypeForScaledOutput(decodingBitmap.colorType());
        // FIXME: If the alphaType is kUnpremul and the image has alpha, the
        // colors may not be correct, since Skia does not yet support drawing
        // to/from unpremultiplied bitmaps.
        outputBitmap.setInfo(SkImageInfo::Make(scaledWidth, scaledHeight,
                scaledColorType, decodingBitmap.alphaType()));
        if (!outputBitmap.tryAllocPixels(outputAllocator, NULL)) {
            // This should only fail on OOM.  The recyclingAllocator should have
            // enough memory since we check this before decoding using the
            // scaleCheckingAllocator.
            return nullObjectReturn("allocation failed for scaled bitmap");
        }

        SkPaint paint;
        // kSrc_Mode instructs us to overwrite the unininitialized pixels in
        // outputBitmap.  Otherwise we would blend by default, which is not
        // what we want.
        paint.setXfermodeMode(SkXfermode::kSrc_Mode);
        paint.setFilterQuality(kLow_SkFilterQuality);

        SkCanvas canvas(outputBitmap);
        canvas.scale(sx, sy);
        canvas.drawBitmap(decodingBitmap, 0.0f, 0.0f, &paint);
    } else {
        outputBitmap.swap(decodingBitmap);
    }

    if (padding) {
        if (peeker.mPatch != NULL) {
            GraphicsJNI::set_jrect(env, padding,
                    peeker.mPatch->paddingLeft, peeker.mPatch->paddingTop,
                    peeker.mPatch->paddingRight, peeker.mPatch->paddingBottom);
        } else {
            GraphicsJNI::set_jrect(env, padding, -1, -1, -1, -1);
        }
    }

    // If we get here, the outputBitmap should have an installed pixelref.
    if (outputBitmap.pixelRef() == NULL) {
        return nullObjectReturn("Got null SkPixelRef");
    }

    if (!isMutable && javaBitmap == NULL) {
        // promise we will never change our pixels (great for sharing and pictures)
        outputBitmap.setImmutable();
    }

    bool isPremultiplied = !requireUnpremultiplied;
    if (javaBitmap != nullptr) {
        GraphicsJNI::reinitBitmap(env, javaBitmap, outputBitmap.info(), isPremultiplied);
        outputBitmap.notifyPixelsChanged();
        // If a java bitmap was passed in for reuse, pass it back
        return javaBitmap;
    }

    int bitmapCreateFlags = 0x0;
    if (isMutable) bitmapCreateFlags |= GraphicsJNI::kBitmapCreateFlag_Mutable;
    if (isPremultiplied) bitmapCreateFlags |= GraphicsJNI::kBitmapCreateFlag_Premultiplied;

    // now create the java bitmap
    return GraphicsJNI::createBitmap(env, javaAllocator.getStorageObjAndReset(),
            bitmapCreateFlags, ninePatchChunk, ninePatchInsets, -1);
}

static jobject nativeDecodeStream(JNIEnv* env, jobject clazz, jobject is, jbyteArray storage,
        jobject padding, jobject options) {

    jobject bitmap = NULL;
    std::unique_ptr<SkStream> stream(CreateJavaInputStreamAdaptor(env, is, storage));

    if (stream.get()) {
        std::unique_ptr<SkStreamRewindable> bufferedStream(
                SkFrontBufferedStream::Create(stream.release(), SkCodec::MinBufferedBytesNeeded()));
        SkASSERT(bufferedStream.get() != NULL);
        bitmap = doDecode(env, bufferedStream.release(), padding, options);
    }
    return bitmap;
}

static jobject nativeDecodeFileDescriptor(JNIEnv* env, jobject clazz, jobject fileDescriptor,
        jobject padding, jobject bitmapFactoryOptions) {

    NPE_CHECK_RETURN_ZERO(env, fileDescriptor);

    int descriptor = jniGetFDFromFileDescriptor(env, fileDescriptor);

    struct stat fdStat;
    if (fstat(descriptor, &fdStat) == -1) {
        doThrowIOE(env, "broken file descriptor");
        return nullObjectReturn("fstat return -1");
    }

    // Restore the descriptor's offset on exiting this function. Even though
    // we dup the descriptor, both the original and dup refer to the same open
    // file description and changes to the file offset in one impact the other.
    AutoFDSeek autoRestore(descriptor);

    // Duplicate the descriptor here to prevent leaking memory. A leak occurs
    // if we only close the file descriptor and not the file object it is used to
    // create.  If we don't explicitly clean up the file (which in turn closes the
    // descriptor) the buffers allocated internally by fseek will be leaked.
    int dupDescriptor = dup(descriptor);

    FILE* file = fdopen(dupDescriptor, "r");
    if (file == NULL) {
        // cleanup the duplicated descriptor since it will not be closed when the
        // file is cleaned up (fclose).
        close(dupDescriptor);
        return nullObjectReturn("Could not open file");
    }

    std::unique_ptr<SkFILEStream> fileStream(new SkFILEStream(file));

    // If there is no offset for the file descriptor, we use SkFILEStream directly.
    if (::lseek(descriptor, 0, SEEK_CUR) == 0) {
        assert(isSeekable(dupDescriptor));
        return doDecode(env, fileStream.release(), padding, bitmapFactoryOptions);
    }

    // Use a buffered stream. Although an SkFILEStream can be rewound, this
    // ensures that SkImageDecoder::Factory never rewinds beyond the
    // current position of the file descriptor.
    std::unique_ptr<SkStreamRewindable> stream(SkFrontBufferedStream::Create(fileStream.release(),
            SkCodec::MinBufferedBytesNeeded()));

    return doDecode(env, stream.release(), padding, bitmapFactoryOptions);
}

static jobject nativeDecodeAsset(JNIEnv* env, jobject clazz, jlong native_asset,
        jobject padding, jobject options) {

    Asset* asset = reinterpret_cast<Asset*>(native_asset);
    // since we know we'll be done with the asset when we return, we can
    // just use a simple wrapper
    std::unique_ptr<AssetStreamAdaptor> stream(new AssetStreamAdaptor(asset));
    return doDecode(env, stream.release(), padding, options);
}

static jobject nativeDecodeByteArray(JNIEnv* env, jobject, jbyteArray byteArray,
        jint offset, jint length, jobject options) {

    AutoJavaByteArray ar(env, byteArray);
    std::unique_ptr<SkMemoryStream> stream(new SkMemoryStream(ar.ptr() + offset, length, false));
    return doDecode(env, stream.release(), NULL, options);
}

static jboolean nativeIsSeekable(JNIEnv* env, jobject, jobject fileDescriptor) {
    jint descriptor = jniGetFDFromFileDescriptor(env, fileDescriptor);
    return isSeekable(descriptor) ? JNI_TRUE : JNI_FALSE;
}

jobject decodeBitmap(JNIEnv* env, void* data, size_t size) {
    SkMemoryStream stream(data, size);
    return doDecode(env, &stream, NULL, NULL);
}

///////////////////////////////////////////////////////////////////////////////

static const JNINativeMethod gMethods[] = {
    {   "nativeDecodeStream",
        "(Ljava/io/InputStream;[BLandroid/graphics/Rect;Landroid/graphics/BitmapFactory$Options;)Landroid/graphics/Bitmap;",
        (void*)nativeDecodeStream
    },

    {   "nativeDecodeFileDescriptor",
        "(Ljava/io/FileDescriptor;Landroid/graphics/Rect;Landroid/graphics/BitmapFactory$Options;)Landroid/graphics/Bitmap;",
        (void*)nativeDecodeFileDescriptor
    },

    {   "nativeDecodeAsset",
        "(JLandroid/graphics/Rect;Landroid/graphics/BitmapFactory$Options;)Landroid/graphics/Bitmap;",
        (void*)nativeDecodeAsset
    },

    {   "nativeDecodeByteArray",
        "([BIILandroid/graphics/BitmapFactory$Options;)Landroid/graphics/Bitmap;",
        (void*)nativeDecodeByteArray
    },

    {   "nativeIsSeekable",
        "(Ljava/io/FileDescriptor;)Z",
        (void*)nativeIsSeekable
    },
};

int register_android_graphics_BitmapFactory(JNIEnv* env) {
    jclass options_class = FindClassOrDie(env, "android/graphics/BitmapFactory$Options");
    gOptions_bitmapFieldID = GetFieldIDOrDie(env, options_class, "inBitmap",
            "Landroid/graphics/Bitmap;");
    gOptions_justBoundsFieldID = GetFieldIDOrDie(env, options_class, "inJustDecodeBounds", "Z");
    gOptions_sampleSizeFieldID = GetFieldIDOrDie(env, options_class, "inSampleSize", "I");
    gOptions_configFieldID = GetFieldIDOrDie(env, options_class, "inPreferredConfig",
            "Landroid/graphics/Bitmap$Config;");
    gOptions_premultipliedFieldID = GetFieldIDOrDie(env, options_class, "inPremultiplied", "Z");
    gOptions_mutableFieldID = GetFieldIDOrDie(env, options_class, "inMutable", "Z");
    gOptions_ditherFieldID = GetFieldIDOrDie(env, options_class, "inDither", "Z");
    gOptions_preferQualityOverSpeedFieldID = GetFieldIDOrDie(env, options_class,
            "inPreferQualityOverSpeed", "Z");
    gOptions_scaledFieldID = GetFieldIDOrDie(env, options_class, "inScaled", "Z");
    gOptions_densityFieldID = GetFieldIDOrDie(env, options_class, "inDensity", "I");
    gOptions_screenDensityFieldID = GetFieldIDOrDie(env, options_class, "inScreenDensity", "I");
    gOptions_targetDensityFieldID = GetFieldIDOrDie(env, options_class, "inTargetDensity", "I");
    gOptions_widthFieldID = GetFieldIDOrDie(env, options_class, "outWidth", "I");
    gOptions_heightFieldID = GetFieldIDOrDie(env, options_class, "outHeight", "I");
    gOptions_mimeFieldID = GetFieldIDOrDie(env, options_class, "outMimeType", "Ljava/lang/String;");
    gOptions_mCancelID = GetFieldIDOrDie(env, options_class, "mCancel", "Z");

    jclass bitmap_class = FindClassOrDie(env, "android/graphics/Bitmap");
    gBitmap_ninePatchInsetsFieldID = GetFieldIDOrDie(env, bitmap_class, "mNinePatchInsets",
            "Landroid/graphics/NinePatch$InsetStruct;");

    gInsetStruct_class = MakeGlobalRefOrDie(env, FindClassOrDie(env,
        "android/graphics/NinePatch$InsetStruct"));
    gInsetStruct_constructorMethodID = GetMethodIDOrDie(env, gInsetStruct_class, "<init>",
                                                        "(IIIIIIIIFIF)V");

    return android::RegisterMethodsOrDie(env, "android/graphics/BitmapFactory",
                                         gMethods, NELEM(gMethods));
}