summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorTreehugger Robot <android-test-infra-autosubmit@system.gserviceaccount.com>2023-12-13 02:36:06 +0000
committerAndroid (Google) Code Review <android-gerrit@google.com>2023-12-13 02:36:06 +0000
commit0cd7e5f6935676c71d6bdc9785bd0436621dc942 (patch)
tree5673805c01b5469f151ed9e8dc2d0a93b1a3b564
parentb2d8c6c369492f7b22d05f418d861de442b71baa (diff)
parentace9af9bc7fc604df5c201c080bbad6ad5ec5529 (diff)
downloadnative-0cd7e5f6935676c71d6bdc9785bd0436621dc942.tar.gz
Merge "FTL: Introduce ftl::Function<F,N> et al." into main
-rw-r--r--include/ftl/details/function.h135
-rw-r--r--include/ftl/function.h297
-rw-r--r--libs/ftl/Android.bp1
-rw-r--r--libs/ftl/function_test.cpp379
4 files changed, 812 insertions, 0 deletions
diff --git a/include/ftl/details/function.h b/include/ftl/details/function.h
new file mode 100644
index 0000000000..35c5a8b302
--- /dev/null
+++ b/include/ftl/details/function.h
@@ -0,0 +1,135 @@
+/*
+ * Copyright 2022 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#pragma once
+
+#include <array>
+#include <cstddef>
+#include <cstdint>
+#include <cstring>
+#include <type_traits>
+
+namespace android::ftl::details {
+
+// The maximum allowed value for the template argument `N` in
+// `ftl::Function<F, N>`.
+constexpr size_t kFunctionMaximumN = 14;
+
+// Converts a member function pointer type `Ret(Class::*)(Args...)` to an equivalent non-member
+// function type `Ret(Args...)`.
+
+template <typename>
+struct remove_member_function_pointer;
+
+template <typename Class, typename Ret, typename... Args>
+struct remove_member_function_pointer<Ret (Class::*)(Args...)> {
+ using type = Ret(Args...);
+};
+
+template <typename Class, typename Ret, typename... Args>
+struct remove_member_function_pointer<Ret (Class::*)(Args...) const> {
+ using type = Ret(Args...);
+};
+
+template <auto MemberFunction>
+using remove_member_function_pointer_t =
+ typename remove_member_function_pointer<decltype(MemberFunction)>::type;
+
+// Helper functions for binding to the supported targets.
+
+template <typename Ret, typename... Args>
+auto bind_opaque_no_op() -> Ret (*)(void*, Args...) {
+ return [](void*, Args...) -> Ret {
+ if constexpr (!std::is_void_v<Ret>) {
+ return Ret{};
+ }
+ };
+}
+
+template <typename F, typename Ret, typename... Args>
+auto bind_opaque_function_object(const F&) -> Ret (*)(void*, Args...) {
+ return [](void* opaque, Args... args) -> Ret {
+ return std::invoke(*static_cast<F*>(opaque), std::forward<Args>(args)...);
+ };
+}
+
+template <auto MemberFunction, typename Class, typename Ret, typename... Args>
+auto bind_member_function(Class* instance, Ret (*)(Args...) = nullptr) {
+ return [instance](Args... args) -> Ret {
+ return std::invoke(MemberFunction, instance, std::forward<Args>(args)...);
+ };
+}
+
+template <auto FreeFunction, typename Ret, typename... Args>
+auto bind_free_function(Ret (*)(Args...) = nullptr) {
+ return [](Args... args) -> Ret { return std::invoke(FreeFunction, std::forward<Args>(args)...); };
+}
+
+// Traits class for the opaque storage used by Function.
+
+template <std::size_t N>
+struct function_opaque_storage {
+ // The actual type used for the opaque storage. An `N` of zero specifies the minimum useful size,
+ // which allows a lambda with zero or one capture args.
+ using type = std::array<std::intptr_t, N + 1>;
+
+ template <typename S>
+ static constexpr bool require_trivially_copyable = std::is_trivially_copyable_v<S>;
+
+ template <typename S>
+ static constexpr bool require_trivially_destructible = std::is_trivially_destructible_v<S>;
+
+ template <typename S>
+ static constexpr bool require_will_fit_in_opaque_storage = sizeof(S) <= sizeof(type);
+
+ template <typename S>
+ static constexpr bool require_alignment_compatible =
+ std::alignment_of_v<S> <= std::alignment_of_v<type>;
+
+ // Copies `src` into the opaque storage, and returns that storage.
+ template <typename S>
+ static type opaque_copy(const S& src) {
+ // TODO: Replace with C++20 concepts/constraints which can give more details.
+ static_assert(require_trivially_copyable<S>,
+ "ftl::Function can only store lambdas that capture trivially copyable data.");
+ static_assert(
+ require_trivially_destructible<S>,
+ "ftl::Function can only store lambdas that capture trivially destructible data.");
+ static_assert(require_will_fit_in_opaque_storage<S>,
+ "ftl::Function has limited storage for lambda captured state. Maybe you need to "
+ "increase N?");
+ static_assert(require_alignment_compatible<S>);
+
+ type opaque;
+ std::memcpy(opaque.data(), &src, sizeof(S));
+ return opaque;
+ }
+};
+
+// Traits class to help determine the template parameters to use for a ftl::Function, given a
+// function object.
+
+template <typename F, typename = decltype(&F::operator())>
+struct function_traits {
+ // The function type `F` with which to instantiate the `Function<F, N>` template.
+ using type = remove_member_function_pointer_t<&F::operator()>;
+
+ // The (minimum) size `N` with which to instantiate the `Function<F, N>` template.
+ static constexpr std::size_t size =
+ (std::max(sizeof(std::intptr_t), sizeof(F)) - 1) / sizeof(std::intptr_t);
+};
+
+} // namespace android::ftl::details
diff --git a/include/ftl/function.h b/include/ftl/function.h
new file mode 100644
index 0000000000..3538ca4eae
--- /dev/null
+++ b/include/ftl/function.h
@@ -0,0 +1,297 @@
+/*
+ * Copyright 2022 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#pragma once
+
+#include <cstddef>
+#include <functional>
+#include <type_traits>
+#include <utility>
+
+#include <ftl/details/function.h>
+
+namespace android::ftl {
+
+// ftl::Function<F, N> is a container for function object, and can mostly be used in place of
+// std::function<F>.
+//
+// Unlike std::function<F>, a ftl::Function<F, N>:
+//
+// * Uses a static amount of memory (controlled by N), and never any dynamic allocation.
+// * Satisfies the std::is_trivially_copyable<> trait.
+// * Satisfies the std::is_trivially_destructible<> trait.
+//
+// However those same limits are also required from the contained function object in turn.
+//
+// The size of a ftl::Function<F, N> is guaranteed to be:
+//
+// sizeof(std::intptr_t) * (N + 2)
+//
+// A ftl::Function<F, N> can always be implicitly converted to a larger size ftl::Function<F, M>.
+// Trying to convert the other way leads to a compilation error.
+//
+// A default-constructed ftl::Function is in an empty state. The operator bool() overload returns
+// false in this state. It is undefined behavior to attempt to invoke the function in this state.
+//
+// The ftl::Function<F, N> can also be constructed or assigned from ftl::no_op. This sets up the
+// ftl::Function to be non-empty, with a function that when called does nothing except
+// default-constructs a return value.
+//
+// The ftl::make_function() helpers construct a ftl::Function<F, N>, including deducing the
+// values of F and N from the arguments it is given.
+//
+// The static ftl::Function<F, N>::make() helpers construct a ftl::Function<F, N> without that
+// deduction, and also allow for implicit argument conversion if the target being called needs them.
+//
+// The construction helpers allow any of the following types of functions to be stored:
+//
+// * Any SMALL function object (as defined by the C++ Standard), such as a lambda with a small
+// capture, or other "functor". The requirements are:
+//
+// 1) The function object must be trivial to destroy (in fact, the destructor will never
+// actually be called once copied to the internal storage).
+// 2) The function object must be trivial to copy (the raw bytes will be copied as the
+// ftl::Function<F, N> is copied/moved).
+// 3) The size of the function object cannot be larger than sizeof(std::intptr_t) * (N + 1),
+// and it cannot require stricter alignment than alignof(std::intptr_t).
+//
+// With the default of N=0, a lambda can only capture a single pointer-sized argument. This is
+// enough to capture `this`, which is why N=0 is the default.
+//
+// * A member function, with the address passed as the template value argument to the construction
+// helper function, along with the instance pointer needed to invoke it passed as an ordinary
+// argument.
+//
+// ftl::make_function<&Class::member_function>(this);
+//
+// Note that the indicated member function will be invoked non-virtually. If you need it to be
+// invoked virtually, you should invoke it yourself with a small lambda like so:
+//
+// ftl::function([this] { virtual_member_function(); });
+//
+// * An ordinary function ("free function"), with the address of the function passed as a template
+// value argument.
+//
+// ftl::make_function<&std::atoi>();
+//
+// As with the member function helper, as the function is known at compile time, it will be called
+// directly.
+//
+// Example usage:
+//
+// class MyClass {
+// public:
+// void on_event() const {}
+// int on_string(int*, std::string_view) { return 1; }
+//
+// auto get_function() {
+// return ftl::function([this] { on_event(); });
+// }
+// } cls;
+//
+// // A function container with no arguments, and returning no value.
+// ftl::Function<void()> f;
+//
+// // Construct a ftl::Function containing a small lambda.
+// f = cls.get_function();
+//
+// // Construct a ftl::Function that calls `cls.on_event()`.
+// f = ftl::function<&MyClass::on_event>(&cls);
+//
+// // Create a do-nothing function.
+// f = ftl::no_op;
+//
+// // Invoke the contained function.
+// f();
+//
+// // Also invokes it.
+// std::invoke(f);
+//
+// // Create a typedef to give a more meaningful name and bound the size.
+// using MyFunction = ftl::Function<int(std::string_view), 2>;
+// int* ptr = nullptr;
+// auto f1 = MyFunction::make_function(
+// [cls = &cls, ptr](std::string_view sv) {
+// return cls->on_string(ptr, sv);
+// });
+// int r = f1("abc"sv);
+//
+// // Returns a default-constructed int (0).
+// f1 = ftl::no_op;
+// r = f1("abc"sv);
+// assert(r == 0);
+
+template <typename F, std::size_t N = 0>
+class Function;
+
+// Used to construct a Function that does nothing.
+struct NoOpTag {};
+
+constexpr NoOpTag no_op;
+
+// Detects that a type is a `ftl::Function<F, N>` regardless of what `F` and `N` are.
+template <typename>
+struct is_function : public std::false_type {};
+
+template <typename F, std::size_t N>
+struct is_function<Function<F, N>> : public std::true_type {};
+
+template <typename T>
+constexpr bool is_function_v = is_function<T>::value;
+
+template <typename Ret, typename... Args, std::size_t N>
+class Function<Ret(Args...), N> final {
+ // Enforce a valid size, with an arbitrary maximum allowed size for the container of
+ // sizeof(std::intptr_t) * 16, though that maximum can be relaxed.
+ static_assert(N <= details::kFunctionMaximumN);
+
+ using OpaqueStorageTraits = details::function_opaque_storage<N>;
+
+ public:
+ // Defining result_type allows ftl::Function to be substituted for std::function.
+ using result_type = Ret;
+
+ // Constructs an empty ftl::Function.
+ Function() = default;
+
+ // Constructing or assigning from nullptr_t also creates an empty ftl::Function.
+ Function(std::nullptr_t) {}
+ Function& operator=(std::nullptr_t) { return *this = Function(nullptr); }
+
+ // Constructing from NoOpTag sets up a a special no-op function which is valid to call, and which
+ // returns a default constructed return value.
+ Function(NoOpTag) : function_(details::bind_opaque_no_op<Ret, Args...>()) {}
+ Function& operator=(NoOpTag) { return *this = Function(no_op); }
+
+ // Constructing/assigning from a function object stores a copy of that function object, however:
+ // * It must be trivially copyable, as the implementation makes a copy with memcpy().
+ // * It must be trivially destructible, as the implementation doesn't destroy the copy!
+ // * It must fit in the limited internal storage, which enforces size/alignment restrictions.
+
+ template <typename F, typename = std::enable_if_t<std::is_invocable_r_v<Ret, F, Args...>>>
+ Function(const F& f)
+ : opaque_(OpaqueStorageTraits::opaque_copy(f)),
+ function_(details::bind_opaque_function_object<F, Ret, Args...>(f)) {}
+
+ template <typename F, typename = std::enable_if_t<std::is_invocable_r_v<Ret, F, Args...>>>
+ Function& operator=(const F& f) noexcept {
+ return *this = Function{OpaqueStorageTraits::opaque_copy(f),
+ details::bind_opaque_function_object<F, Ret, Args...>(f)};
+ }
+
+ // Constructing/assigning from a smaller ftl::Function is allowed, but not anything else.
+
+ template <std::size_t M>
+ Function(const Function<Ret(Args...), M>& other)
+ : opaque_{OpaqueStorageTraits::opaque_copy(other.opaque_)}, function_(other.function_) {}
+
+ template <std::size_t M>
+ auto& operator=(const Function<Ret(Args...), M>& other) {
+ return *this = Function{OpaqueStorageTraits::opaque_copy(other.opaque_), other.function_};
+ }
+
+ // Returns true if a function is set.
+ explicit operator bool() const { return function_ != nullptr; }
+
+ // Checks if the other function has the same contents as this one.
+ bool operator==(const Function& other) const {
+ return other.opaque_ == opaque_ && other.function_ == function_;
+ }
+ bool operator!=(const Function& other) const { return !operator==(other); }
+
+ // Alternative way of testing for a function being set.
+ bool operator==(std::nullptr_t) const { return function_ == nullptr; }
+ bool operator!=(std::nullptr_t) const { return function_ != nullptr; }
+
+ // Invokes the function.
+ Ret operator()(Args... args) const {
+ return std::invoke(function_, opaque_.data(), std::forward<Args>(args)...);
+ }
+
+ // Creation helper for function objects, such as lambdas.
+ template <typename F>
+ static auto make(const F& f) -> decltype(Function{f}) {
+ return Function{f};
+ }
+
+ // Creation helper for a class pointer and a compile-time chosen member function to call.
+ template <auto MemberFunction, typename Class>
+ static auto make(Class* instance) -> decltype(Function{
+ details::bind_member_function<MemberFunction>(instance,
+ static_cast<Ret (*)(Args...)>(nullptr))}) {
+ return Function{details::bind_member_function<MemberFunction>(
+ instance, static_cast<Ret (*)(Args...)>(nullptr))};
+ }
+
+ // Creation helper for a compile-time chosen free function to call.
+ template <auto FreeFunction>
+ static auto make() -> decltype(Function{
+ details::bind_free_function<FreeFunction>(static_cast<Ret (*)(Args...)>(nullptr))}) {
+ return Function{
+ details::bind_free_function<FreeFunction>(static_cast<Ret (*)(Args...)>(nullptr))};
+ }
+
+ private:
+ // Needed so a Function<F, M> can be converted to a Function<F, N>.
+ template <typename, std::size_t>
+ friend class Function;
+
+ // The function pointer type of function stored in `function_`. The first argument is always
+ // `&opaque_`.
+ using StoredFunction = Ret(void*, Args...);
+
+ // The type of the opaque storage, used to hold an appropriate function object.
+ // The type stored here is ONLY known to the StoredFunction.
+ // We always use at least one std::intptr_t worth of storage, and always a multiple of that size.
+ using OpaqueStorage = typename OpaqueStorageTraits::type;
+
+ // Internal constructor for creating from a raw opaque blob + function pointer.
+ Function(const OpaqueStorage& opaque, StoredFunction* function)
+ : opaque_(opaque), function_(function) {}
+
+ // Note: `mutable` so that `operator() const` can use it.
+ mutable OpaqueStorage opaque_{};
+ StoredFunction* function_{nullptr};
+};
+
+// Makes a ftl::Function given a function object `F`.
+template <typename F, typename T = details::function_traits<F>>
+Function(const F&) -> Function<typename T::type, T::size>;
+
+template <typename F>
+auto make_function(const F& f) -> decltype(Function{f}) {
+ return Function{f};
+}
+
+// Makes a ftl::Function given a `MemberFunction` and a instance pointer to the associated `Class`.
+template <auto MemberFunction, typename Class>
+auto make_function(Class* instance)
+ -> decltype(Function{details::bind_member_function<MemberFunction>(
+ instance,
+ static_cast<details::remove_member_function_pointer_t<MemberFunction>*>(nullptr))}) {
+ return Function{details::bind_member_function<MemberFunction>(
+ instance, static_cast<details::remove_member_function_pointer_t<MemberFunction>*>(nullptr))};
+}
+
+// Makes a ftl::Function given an ordinary free function.
+template <auto FreeFunction>
+auto make_function() -> decltype(Function{
+ details::bind_free_function<FreeFunction>(static_cast<decltype(FreeFunction)>(nullptr))}) {
+ return Function{
+ details::bind_free_function<FreeFunction>(static_cast<decltype(FreeFunction)>(nullptr))};
+}
+
+} // namespace android::ftl
diff --git a/libs/ftl/Android.bp b/libs/ftl/Android.bp
index ea1b5e4998..918680d6a7 100644
--- a/libs/ftl/Android.bp
+++ b/libs/ftl/Android.bp
@@ -17,6 +17,7 @@ cc_test {
"enum_test.cpp",
"fake_guard_test.cpp",
"flags_test.cpp",
+ "function_test.cpp",
"future_test.cpp",
"match_test.cpp",
"mixins_test.cpp",
diff --git a/libs/ftl/function_test.cpp b/libs/ftl/function_test.cpp
new file mode 100644
index 0000000000..91b5e08041
--- /dev/null
+++ b/libs/ftl/function_test.cpp
@@ -0,0 +1,379 @@
+/*
+ * Copyright 2022 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include <ftl/function.h>
+#include <gtest/gtest.h>
+
+#include <array>
+#include <cstddef>
+#include <cstdint>
+#include <string_view>
+#include <type_traits>
+
+namespace android::test {
+namespace {
+
+// Create an alias to composite requirements defined by the trait class `T` for easier testing.
+template <typename T, typename S>
+inline constexpr bool is_opaquely_storable = (T::template require_trivially_copyable<S> &&
+ T::template require_trivially_destructible<S> &&
+ T::template require_will_fit_in_opaque_storage<S> &&
+ T::template require_alignment_compatible<S>);
+
+// `I` gives a count of sizeof(std::intptr_t) bytes , and `J` gives a raw count of bytes
+template <size_t I, size_t J = 0>
+struct KnownSizeFunctionObject {
+ using Data = std::array<std::byte, sizeof(std::intptr_t) * I + J>;
+ void operator()() const {};
+ Data data{};
+};
+
+} // namespace
+
+// static_assert the expected type traits
+static_assert(std::is_invocable_r_v<void, ftl::Function<void()>>);
+static_assert(std::is_trivially_copyable_v<ftl::Function<void()>>);
+static_assert(std::is_trivially_destructible_v<ftl::Function<void()>>);
+static_assert(std::is_trivially_copy_constructible_v<ftl::Function<void()>>);
+static_assert(std::is_trivially_move_constructible_v<ftl::Function<void()>>);
+static_assert(std::is_trivially_copy_assignable_v<ftl::Function<void()>>);
+static_assert(std::is_trivially_move_assignable_v<ftl::Function<void()>>);
+
+template <typename T>
+using function_traits = ftl::details::function_traits<T>;
+
+// static_assert that the expected value of N is used for known function object sizes.
+static_assert(function_traits<KnownSizeFunctionObject<0, 0>>::size == 0);
+static_assert(function_traits<KnownSizeFunctionObject<0, 1>>::size == 0);
+static_assert(function_traits<KnownSizeFunctionObject<1, 0>>::size == 0);
+static_assert(function_traits<KnownSizeFunctionObject<1, 1>>::size == 1);
+static_assert(function_traits<KnownSizeFunctionObject<2, 0>>::size == 1);
+static_assert(function_traits<KnownSizeFunctionObject<2, 1>>::size == 2);
+
+// Check that is_function_v works
+static_assert(!ftl::is_function_v<KnownSizeFunctionObject<0>>);
+static_assert(!ftl::is_function_v<std::function<void()>>);
+static_assert(ftl::is_function_v<ftl::Function<void()>>);
+
+// static_assert what can and cannot be stored inside the opaque storage
+
+template <size_t N>
+using function_opaque_storage = ftl::details::function_opaque_storage<N>;
+
+// Function objects can be stored if they fit.
+static_assert(is_opaquely_storable<function_opaque_storage<0>, KnownSizeFunctionObject<0>>);
+static_assert(is_opaquely_storable<function_opaque_storage<0>, KnownSizeFunctionObject<1>>);
+static_assert(!is_opaquely_storable<function_opaque_storage<0>, KnownSizeFunctionObject<2>>);
+
+static_assert(is_opaquely_storable<function_opaque_storage<1>, KnownSizeFunctionObject<2>>);
+static_assert(!is_opaquely_storable<function_opaque_storage<1>, KnownSizeFunctionObject<3>>);
+
+static_assert(is_opaquely_storable<function_opaque_storage<2>, KnownSizeFunctionObject<3>>);
+static_assert(!is_opaquely_storable<function_opaque_storage<2>, KnownSizeFunctionObject<4>>);
+
+// Another opaque storage can be stored if it fits. This property is used to copy smaller
+// ftl::Functions into larger ones.
+static_assert(is_opaquely_storable<function_opaque_storage<2>, function_opaque_storage<0>::type>);
+static_assert(is_opaquely_storable<function_opaque_storage<2>, function_opaque_storage<1>::type>);
+static_assert(is_opaquely_storable<function_opaque_storage<2>, function_opaque_storage<2>::type>);
+static_assert(!is_opaquely_storable<function_opaque_storage<2>, function_opaque_storage<3>::type>);
+
+// Function objects that aren't trivially copyable or destroyable cannot be stored.
+auto lambda_capturing_unique_ptr = [ptr = std::unique_ptr<void*>()] { static_cast<void>(ptr); };
+static_assert(
+ !is_opaquely_storable<function_opaque_storage<2>, decltype(lambda_capturing_unique_ptr)>);
+
+// Keep in sync with "Example usage" in header file.
+TEST(Function, Example) {
+ using namespace std::string_view_literals;
+
+ class MyClass {
+ public:
+ void on_event() const {}
+ int on_string(int*, std::string_view) { return 1; }
+
+ auto get_function() {
+ return ftl::make_function([this] { on_event(); });
+ }
+ } cls;
+
+ // A function container with no arguments, and returning no value.
+ ftl::Function<void()> f;
+
+ // Construct a ftl::Function containing a small lambda.
+ f = cls.get_function();
+
+ // Construct a ftl::Function that calls `cls.on_event()`.
+ f = ftl::make_function<&MyClass::on_event>(&cls);
+
+ // Create a do-nothing function.
+ f = ftl::no_op;
+
+ // Invoke the contained function.
+ f();
+
+ // Also invokes it.
+ std::invoke(f);
+
+ // Create a typedef to give a more meaningful name and bound the size.
+ using MyFunction = ftl::Function<int(std::string_view), 2>;
+ int* ptr = nullptr;
+ auto f1 =
+ MyFunction::make([cls = &cls, ptr](std::string_view sv) { return cls->on_string(ptr, sv); });
+ int r = f1("abc"sv);
+
+ // Returns a default-constructed int (0).
+ f1 = ftl::no_op;
+ r = f1("abc"sv);
+ EXPECT_EQ(r, 0);
+}
+
+TEST(Function, BasicOperations) {
+ // Default constructible.
+ ftl::Function<int()> f;
+
+ // Compares as empty
+ EXPECT_FALSE(f);
+ EXPECT_TRUE(f == nullptr);
+ EXPECT_FALSE(f != nullptr);
+ EXPECT_TRUE(ftl::Function<int()>() == f);
+ EXPECT_FALSE(ftl::Function<int()>() != f);
+
+ // Assigning no_op sets it to not empty.
+ f = ftl::no_op;
+
+ // Verify it can be called, and that it returns a default constructed value.
+ EXPECT_EQ(f(), 0);
+
+ // Comparable when non-empty.
+ EXPECT_TRUE(f);
+ EXPECT_FALSE(f == nullptr);
+ EXPECT_TRUE(f != nullptr);
+ EXPECT_FALSE(ftl::Function<int()>() == f);
+ EXPECT_TRUE(ftl::Function<int()>() != f);
+
+ // Constructing from nullptr means empty.
+ f = ftl::Function<int()>{nullptr};
+ EXPECT_FALSE(f);
+
+ // Assigning nullptr means it is empty.
+ f = nullptr;
+ EXPECT_FALSE(f);
+
+ // Move construction
+ f = ftl::no_op;
+ ftl::Function<int()> g{std::move(f)};
+ EXPECT_TRUE(g != nullptr);
+
+ // Move assignment
+ f = nullptr;
+ f = std::move(g);
+ EXPECT_TRUE(f != nullptr);
+
+ // Copy construction
+ ftl::Function<int()> h{f};
+ EXPECT_TRUE(h != nullptr);
+
+ // Copy assignment
+ g = h;
+ EXPECT_TRUE(g != nullptr);
+}
+
+TEST(Function, CanMoveConstructFromLambda) {
+ auto lambda = [] {};
+ ftl::Function<void()> f{std::move(lambda)};
+}
+
+TEST(Function, TerseDeducedConstructAndAssignFromLambda) {
+ auto f = ftl::Function([] { return 1; });
+ EXPECT_EQ(f(), 1);
+
+ f = [] { return 2; };
+ EXPECT_EQ(f(), 2);
+}
+
+namespace {
+
+struct ImplicitConversionsHelper {
+ auto exact(int) -> int { return 0; }
+ auto inexact(long) -> short { return 0; }
+ // TODO: Switch to `auto templated(auto x)` with C++20
+ template <typename T>
+ T templated(T x) {
+ return x;
+ }
+
+ static auto static_exact(int) -> int { return 0; }
+ static auto static_inexact(long) -> short { return 0; }
+ // TODO: Switch to `static auto static_templated(auto x)` with C++20
+ template <typename T>
+ static T static_templated(T x) {
+ return x;
+ }
+};
+
+} // namespace
+
+TEST(Function, ImplicitConversions) {
+ using Function = ftl::Function<int(int)>;
+ auto check = [](Function f) { return f(0); };
+ auto exact = [](int) -> int { return 0; };
+ auto inexact = [](long) -> short { return 0; };
+ auto templated = [](auto x) { return x; };
+
+ ImplicitConversionsHelper helper;
+
+ // Note, `check(nullptr)` would crash, so we can only check if it would be invocable.
+ static_assert(std::is_invocable_v<decltype(check), decltype(nullptr)>);
+
+ // Note: We invoke each of these to fully expand all the templates involved.
+ EXPECT_EQ(check(ftl::no_op), 0);
+
+ EXPECT_EQ(check(exact), 0);
+ EXPECT_EQ(check(inexact), 0);
+ EXPECT_EQ(check(templated), 0);
+
+ EXPECT_EQ(check(Function::make<&ImplicitConversionsHelper::exact>(&helper)), 0);
+ EXPECT_EQ(check(Function::make<&ImplicitConversionsHelper::inexact>(&helper)), 0);
+ EXPECT_EQ(check(Function::make<&ImplicitConversionsHelper::templated<int>>(&helper)), 0);
+
+ EXPECT_EQ(check(Function::make<&ImplicitConversionsHelper::static_exact>()), 0);
+ EXPECT_EQ(check(Function::make<&ImplicitConversionsHelper::static_inexact>()), 0);
+ EXPECT_EQ(check(Function::make<&ImplicitConversionsHelper::static_templated<int>>()), 0);
+}
+
+TEST(Function, MakeWithNonConstMemberFunction) {
+ struct Observer {
+ bool called = false;
+ void setCalled() { called = true; }
+ } observer;
+
+ auto f = ftl::make_function<&Observer::setCalled>(&observer);
+
+ f();
+
+ EXPECT_TRUE(observer.called);
+
+ EXPECT_TRUE(f == ftl::Function<void()>::make<&Observer::setCalled>(&observer));
+}
+
+TEST(Function, MakeWithConstMemberFunction) {
+ struct Observer {
+ mutable bool called = false;
+ void setCalled() const { called = true; }
+ } observer;
+
+ const auto f = ftl::make_function<&Observer::setCalled>(&observer);
+
+ f();
+
+ EXPECT_TRUE(observer.called);
+
+ EXPECT_TRUE(f == ftl::Function<void()>::make<&Observer::setCalled>(&observer));
+}
+
+TEST(Function, MakeWithConstClassPointer) {
+ const struct Observer {
+ mutable bool called = false;
+ void setCalled() const { called = true; }
+ } observer;
+
+ const auto f = ftl::make_function<&Observer::setCalled>(&observer);
+
+ f();
+
+ EXPECT_TRUE(observer.called);
+
+ EXPECT_TRUE(f == ftl::Function<void()>::make<&Observer::setCalled>(&observer));
+}
+
+TEST(Function, MakeWithNonCapturingLambda) {
+ auto f = ftl::make_function([](int a, int b) { return a + b; });
+ EXPECT_EQ(f(1, 2), 3);
+}
+
+TEST(Function, MakeWithCapturingLambda) {
+ bool called = false;
+ auto f = ftl::make_function([&called](int a, int b) {
+ called = true;
+ return a + b;
+ });
+ EXPECT_EQ(f(1, 2), 3);
+ EXPECT_TRUE(called);
+}
+
+TEST(Function, MakeWithCapturingMutableLambda) {
+ bool called = false;
+ auto f = ftl::make_function([&called](int a, int b) mutable {
+ called = true;
+ return a + b;
+ });
+ EXPECT_EQ(f(1, 2), 3);
+ EXPECT_TRUE(called);
+}
+
+TEST(Function, MakeWithThreePointerCapturingLambda) {
+ bool my_bool = false;
+ int my_int = 0;
+ float my_float = 0.f;
+
+ auto f = ftl::make_function(
+ [ptr_bool = &my_bool, ptr_int = &my_int, ptr_float = &my_float](int a, int b) mutable {
+ *ptr_bool = true;
+ *ptr_int = 1;
+ *ptr_float = 1.f;
+
+ return a + b;
+ });
+
+ EXPECT_EQ(f(1, 2), 3);
+
+ EXPECT_TRUE(my_bool);
+ EXPECT_EQ(my_int, 1);
+ EXPECT_EQ(my_float, 1.f);
+}
+
+TEST(Function, MakeWithFreeFunction) {
+ auto f = ftl::make_function<&std::make_unique<int, int>>();
+ std::unique_ptr<int> unique_int = f(1);
+ ASSERT_TRUE(unique_int);
+ EXPECT_EQ(*unique_int, 1);
+}
+
+TEST(Function, CopyToLarger) {
+ int counter = 0;
+ ftl::Function<void()> a{[ptr_counter = &counter] { (*ptr_counter)++; }};
+ ftl::Function<void(), 1> b = a;
+ ftl::Function<void(), 2> c = a;
+
+ EXPECT_EQ(counter, 0);
+ a();
+ EXPECT_EQ(counter, 1);
+ b();
+ EXPECT_EQ(counter, 2);
+ c();
+ EXPECT_EQ(counter, 3);
+
+ b = [ptr_counter = &counter] { (*ptr_counter) += 2; };
+ c = [ptr_counter = &counter] { (*ptr_counter) += 3; };
+
+ b();
+ EXPECT_EQ(counter, 5);
+ c();
+ EXPECT_EQ(counter, 8);
+}
+
+} // namespace android::test