summaryrefslogtreecommitdiff
path: root/include/ftl/small_map.h
blob: 84c15ebdca016f2502dced486e835bbf5f7455f0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
/*
 * Copyright 2020 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#pragma once

#include <ftl/initializer_list.h>
#include <ftl/small_vector.h>

#include <functional>
#include <optional>
#include <type_traits>
#include <utility>

namespace android::ftl {

// Associative container with unique, unordered keys. Unlike std::unordered_map, key-value pairs are
// stored in contiguous storage for cache efficiency. The map is allocated statically until its size
// exceeds N, at which point mappings are relocated to dynamic memory.
//
// SmallMap<K, V, 0> unconditionally allocates on the heap.
//
// Example usage:
//
//   ftl::SmallMap<int, std::string, 3> map;
//   assert(map.empty());
//   assert(!map.dynamic());
//
//   map = ftl::init::map<int, std::string>(123, "abc")(-1)(42, 3u, '?');
//   assert(map.size() == 3u);
//   assert(!map.dynamic());
//
//   assert(map.contains(123));
//   assert(map.find(42, [](const std::string& s) { return s.size(); }) == 3u);
//
//   const auto opt = map.find(-1);
//   assert(opt);
//
//   std::string& ref = *opt;
//   assert(ref.empty());
//   ref = "xyz";
//
//   assert(map == SmallMap(ftl::init::map(-1, "xyz")(42, "???")(123, "abc")));
//
template <typename K, typename V, std::size_t N>
class SmallMap final {
  using Map = SmallVector<std::pair<const K, V>, N>;

 public:
  using key_type = K;
  using mapped_type = V;

  using value_type = typename Map::value_type;
  using size_type = typename Map::size_type;
  using difference_type = typename Map::difference_type;

  using reference = typename Map::reference;
  using iterator = typename Map::iterator;

  using const_reference = typename Map::const_reference;
  using const_iterator = typename Map::const_iterator;

  // Creates an empty map.
  SmallMap() = default;

  // Constructs at most N key-value pairs in place by forwarding per-pair constructor arguments.
  // The template arguments K, V, and N are inferred using the deduction guide defined below.
  // The syntax for listing pairs is as follows:
  //
  //   ftl::SmallMap map = ftl::init::map<int, std::string>(123, "abc")(-1)(42, 3u, '?');
  //
  //   static_assert(std::is_same_v<decltype(map), ftl::SmallMap<int, std::string, 3>>);
  //   assert(map.size() == 3u);
  //   assert(map.contains(-1) && map.find(-1)->get().empty());
  //   assert(map.contains(42) && map.find(42)->get() == "???");
  //   assert(map.contains(123) && map.find(123)->get() == "abc");
  //
  // The types of the key and value are deduced if the first pair contains exactly two arguments:
  //
  //   ftl::SmallMap map = ftl::init::map(0, 'a')(1, 'b')(2, 'c');
  //   static_assert(std::is_same_v<decltype(map), ftl::SmallMap<int, char, 3>>);
  //
  template <typename U, std::size_t... Sizes, typename... Types>
  SmallMap(InitializerList<U, std::index_sequence<Sizes...>, Types...>&& list)
      : map_(std::move(list)) {
    // TODO: Enforce unique keys.
  }

  size_type max_size() const { return map_.max_size(); }
  size_type size() const { return map_.size(); }
  bool empty() const { return map_.empty(); }

  // Returns whether the map is backed by static or dynamic storage.
  bool dynamic() const { return map_.dynamic(); }

  iterator begin() { return map_.begin(); }
  const_iterator begin() const { return cbegin(); }
  const_iterator cbegin() const { return map_.cbegin(); }

  iterator end() { return map_.end(); }
  const_iterator end() const { return cend(); }
  const_iterator cend() const { return map_.cend(); }

  // Returns whether a mapping exists for the given key.
  bool contains(const key_type& key) const {
    return find(key, [](const mapped_type&) {});
  }

  // Returns a reference to the value for the given key, or std::nullopt if the key was not found.
  //
  //   ftl::SmallMap map = ftl::init::map('a', 'A')('b', 'B')('c', 'C');
  //
  //   const auto opt = map.find('c');
  //   assert(opt == 'C');
  //
  //   char d = 'd';
  //   const auto ref = map.find('d').value_or(std::ref(d));
  //   ref.get() = 'D';
  //   assert(d == 'D');
  //
  auto find(const key_type& key) const -> std::optional<std::reference_wrapper<const mapped_type>> {
    return find(key, [](const mapped_type& v) { return std::cref(v); });
  }

  auto find(const key_type& key) -> std::optional<std::reference_wrapper<mapped_type>> {
    return find(key, [](mapped_type& v) { return std::ref(v); });
  }

  // Returns the result R of a unary operation F on (a constant or mutable reference to) the value
  // for the given key, or std::nullopt if the key was not found. If F has a return type of void,
  // then the Boolean result indicates whether the key was found.
  //
  //   ftl::SmallMap map = ftl::init::map('a', 'x')('b', 'y')('c', 'z');
  //
  //   assert(map.find('c', [](char c) { return std::toupper(c); }) == 'Z');
  //   assert(map.find('c', [](char& c) { c = std::toupper(c); }));
  //
  template <typename F, typename R = std::invoke_result_t<F, const mapped_type&>>
  auto find(const key_type& key, F f) const
      -> std::conditional_t<std::is_void_v<R>, bool, std::optional<R>> {
    for (auto& [k, v] : *this) {
      if (k == key) {
        if constexpr (std::is_void_v<R>) {
          f(v);
          return true;
        } else {
          return f(v);
        }
      }
    }

    return {};
  }

  template <typename F>
  auto find(const key_type& key, F f) {
    return std::as_const(*this).find(
        key, [&f](const mapped_type& v) { return f(const_cast<mapped_type&>(v)); });
  }

 private:
  Map map_;
};

// Deduction guide for in-place constructor.
template <typename K, typename V, std::size_t... Sizes, typename... Types>
SmallMap(InitializerList<KeyValue<K, V>, std::index_sequence<Sizes...>, Types...>&&)
    -> SmallMap<K, V, sizeof...(Sizes)>;

// Returns whether the key-value pairs of two maps are equal.
template <typename K, typename V, std::size_t N, typename Q, typename W, std::size_t M>
bool operator==(const SmallMap<K, V, N>& lhs, const SmallMap<Q, W, M>& rhs) {
  if (lhs.size() != rhs.size()) return false;

  for (const auto& [k, v] : lhs) {
    const auto& lv = v;
    if (!rhs.find(k, [&lv](const auto& rv) { return lv == rv; }).value_or(false)) {
      return false;
    }
  }

  return true;
}

// TODO: Remove in C++20.
template <typename K, typename V, std::size_t N, typename Q, typename W, std::size_t M>
inline bool operator!=(const SmallMap<K, V, N>& lhs, const SmallMap<Q, W, M>& rhs) {
  return !(lhs == rhs);
}

}  // namespace android::ftl