summaryrefslogtreecommitdiff
path: root/libs/binder/include/binder/SafeInterface.h
blob: 5fa2ff6a874c84d00c5eec2a05387be0e4a6a097 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
/*
 * Copyright 2016 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#pragma once

#include <binder/IInterface.h>
#include <binder/Parcel.h>
#include <cutils/compiler.h>

// Set to 1 to enable CallStacks when logging errors
#define SI_DUMP_CALLSTACKS 0
#if SI_DUMP_CALLSTACKS
#include <utils/CallStack.h>
#endif

#include <utils/NativeHandle.h>

#include <functional>
#include <type_traits>

namespace android {
namespace SafeInterface {

// ParcelHandler is responsible for writing/reading various types to/from a Parcel in a generic way
class ParcelHandler {
public:
    explicit ParcelHandler(const char* logTag) : mLogTag(logTag) {}

    // Specializations for types with dedicated handling in Parcel
    status_t read(const Parcel& parcel, bool* b) const {
        return callParcel("readBool", [&]() { return parcel.readBool(b); });
    }
    status_t write(Parcel* parcel, bool b) const {
        return callParcel("writeBool", [&]() { return parcel->writeBool(b); });
    }
    template <typename E>
    typename std::enable_if<std::is_enum<E>::value, status_t>::type read(const Parcel& parcel,
                                                                         E* e) const {
        typename std::underlying_type<E>::type u{};
        status_t result = read(parcel, &u);
        *e = static_cast<E>(u);
        return result;
    }
    template <typename E>
    typename std::enable_if<std::is_enum<E>::value, status_t>::type write(Parcel* parcel,
                                                                          E e) const {
        return write(parcel, static_cast<typename std::underlying_type<E>::type>(e));
    }
    template <typename T>
    typename std::enable_if<std::is_base_of<Flattenable<T>, T>::value, status_t>::type read(
            const Parcel& parcel, T* t) const {
        return callParcel("read(Flattenable)", [&]() { return parcel.read(*t); });
    }
    template <typename T>
    typename std::enable_if<std::is_base_of<Flattenable<T>, T>::value, status_t>::type write(
            Parcel* parcel, const T& t) const {
        return callParcel("write(Flattenable)", [&]() { return parcel->write(t); });
    }
    template <typename T>
    typename std::enable_if<std::is_base_of<Flattenable<T>, T>::value, status_t>::type read(
            const Parcel& parcel, sp<T>* t) const {
        *t = new T{};
        return callParcel("read(sp<Flattenable>)", [&]() { return parcel.read(*(t->get())); });
    }
    template <typename T>
    typename std::enable_if<std::is_base_of<Flattenable<T>, T>::value, status_t>::type write(
            Parcel* parcel, const sp<T>& t) const {
        return callParcel("write(sp<Flattenable>)", [&]() { return parcel->write(*(t.get())); });
    }
    template <typename T>
    typename std::enable_if<std::is_base_of<LightFlattenable<T>, T>::value, status_t>::type read(
            const Parcel& parcel, T* t) const {
        return callParcel("read(LightFlattenable)", [&]() { return parcel.read(*t); });
    }
    template <typename T>
    typename std::enable_if<std::is_base_of<LightFlattenable<T>, T>::value, status_t>::type write(
            Parcel* parcel, const T& t) const {
        return callParcel("write(LightFlattenable)", [&]() { return parcel->write(t); });
    }
    template <typename NH>
    typename std::enable_if<std::is_same<NH, sp<NativeHandle>>::value, status_t>::type read(
            const Parcel& parcel, NH* nh) {
        *nh = NativeHandle::create(parcel.readNativeHandle(), true);
        return NO_ERROR;
    }
    template <typename NH>
    typename std::enable_if<std::is_same<NH, sp<NativeHandle>>::value, status_t>::type write(
            Parcel* parcel, const NH& nh) {
        return callParcel("write(sp<NativeHandle>)",
                          [&]() { return parcel->writeNativeHandle(nh->handle()); });
    }
    template <typename T>
    typename std::enable_if<std::is_base_of<Parcelable, T>::value, status_t>::type read(
            const Parcel& parcel, T* t) const {
        return callParcel("readParcelable", [&]() { return parcel.readParcelable(t); });
    }
    template <typename T>
    typename std::enable_if<std::is_base_of<Parcelable, T>::value, status_t>::type write(
            Parcel* parcel, const T& t) const {
        return callParcel("writeParcelable", [&]() { return parcel->writeParcelable(t); });
    }
    status_t read(const Parcel& parcel, String8* str) const {
        return callParcel("readString8", [&]() { return parcel.readString8(str); });
    }
    status_t write(Parcel* parcel, const String8& str) const {
        return callParcel("writeString8", [&]() { return parcel->writeString8(str); });
    }
    template <typename T>
    typename std::enable_if<std::is_same<IBinder, T>::value, status_t>::type read(
            const Parcel& parcel, sp<T>* pointer) const {
        return callParcel("readNullableStrongBinder",
                          [&]() { return parcel.readNullableStrongBinder(pointer); });
    }
    template <typename T>
    typename std::enable_if<std::is_same<IBinder, T>::value, status_t>::type write(
            Parcel* parcel, const sp<T>& pointer) const {
        return callParcel("writeStrongBinder",
                          [&]() { return parcel->writeStrongBinder(pointer); });
    }
    template <typename T>
    typename std::enable_if<std::is_base_of<IInterface, T>::value, status_t>::type read(
            const Parcel& parcel, sp<T>* pointer) const {
        return callParcel("readNullableStrongBinder[IInterface]",
                          [&]() { return parcel.readNullableStrongBinder(pointer); });
    }
    template <typename T>
    typename std::enable_if<std::is_base_of<IInterface, T>::value, status_t>::type write(
            Parcel* parcel, const sp<T>& interface) const {
        return write(parcel, IInterface::asBinder(interface));
    }
    template <typename T>
    typename std::enable_if<std::is_base_of<Parcelable, T>::value, status_t>::type read(
            const Parcel& parcel, std::vector<T>* v) const {
        return callParcel("readParcelableVector", [&]() { return parcel.readParcelableVector(v); });
    }
    template <typename T>
    typename std::enable_if<std::is_base_of<Parcelable, T>::value, status_t>::type write(
            Parcel* parcel, const std::vector<T>& v) const {
        return callParcel("writeParcelableVector",
                          [&]() { return parcel->writeParcelableVector(v); });
    }
    status_t read(const Parcel& parcel, float* f) const {
        return callParcel("readFloat", [&]() { return parcel.readFloat(f); });
    }
    status_t write(Parcel* parcel, float f) const {
        return callParcel("writeFloat", [&]() { return parcel->writeFloat(f); });
    }

    // Templates to handle integral types. We use a struct template to require that the called
    // function exactly matches the signedness and size of the argument (e.g., the argument isn't
    // silently widened).
    template <bool isSigned, size_t size, typename I>
    struct HandleInt;
    template <typename I>
    struct HandleInt<true, 4, I> {
        static status_t read(const ParcelHandler& handler, const Parcel& parcel, I* i) {
            return handler.callParcel("readInt32", [&]() { return parcel.readInt32(i); });
        }
        static status_t write(const ParcelHandler& handler, Parcel* parcel, I i) {
            return handler.callParcel("writeInt32", [&]() { return parcel->writeInt32(i); });
        }
    };
    template <typename I>
    struct HandleInt<false, 4, I> {
        static status_t read(const ParcelHandler& handler, const Parcel& parcel, I* i) {
            return handler.callParcel("readUint32", [&]() { return parcel.readUint32(i); });
        }
        static status_t write(const ParcelHandler& handler, Parcel* parcel, I i) {
            return handler.callParcel("writeUint32", [&]() { return parcel->writeUint32(i); });
        }
    };
    template <typename I>
    struct HandleInt<true, 8, I> {
        static status_t read(const ParcelHandler& handler, const Parcel& parcel, I* i) {
            return handler.callParcel("readInt64", [&]() { return parcel.readInt64(i); });
        }
        static status_t write(const ParcelHandler& handler, Parcel* parcel, I i) {
            return handler.callParcel("writeInt64", [&]() { return parcel->writeInt64(i); });
        }
    };
    template <typename I>
    struct HandleInt<false, 8, I> {
        static status_t read(const ParcelHandler& handler, const Parcel& parcel, I* i) {
            return handler.callParcel("readUint64", [&]() { return parcel.readUint64(i); });
        }
        static status_t write(const ParcelHandler& handler, Parcel* parcel, I i) {
            return handler.callParcel("writeUint64", [&]() { return parcel->writeUint64(i); });
        }
    };
    template <typename I>
    typename std::enable_if<std::is_integral<I>::value, status_t>::type read(const Parcel& parcel,
                                                                             I* i) const {
        return HandleInt<std::is_signed<I>::value, sizeof(I), I>::read(*this, parcel, i);
    }
    template <typename I>
    typename std::enable_if<std::is_integral<I>::value, status_t>::type write(Parcel* parcel,
                                                                              I i) const {
        return HandleInt<std::is_signed<I>::value, sizeof(I), I>::write(*this, parcel, i);
    }

private:
    const char* const mLogTag;

    // Helper to encapsulate error handling while calling the various Parcel methods
    template <typename Function>
    status_t callParcel(const char* name, Function f) const {
        status_t error = f();
        if (CC_UNLIKELY(error != NO_ERROR)) {
            ALOG(LOG_ERROR, mLogTag, "Failed to %s, (%d: %s)", name, error, strerror(-error));
#if SI_DUMP_CALLSTACKS
            CallStack callStack(mLogTag);
#endif
        }
        return error;
    }
};

// Utility struct template which allows us to retrieve the types of the parameters of a member
// function pointer
template <typename T>
struct ParamExtractor;
template <typename Class, typename Return, typename... Params>
struct ParamExtractor<Return (Class::*)(Params...)> {
    using ParamTuple = std::tuple<Params...>;
};
template <typename Class, typename Return, typename... Params>
struct ParamExtractor<Return (Class::*)(Params...) const> {
    using ParamTuple = std::tuple<Params...>;
};

} // namespace SafeInterface

template <typename Interface>
class SafeBpInterface : public BpInterface<Interface> {
protected:
    SafeBpInterface(const sp<IBinder>& impl, const char* logTag)
          : BpInterface<Interface>(impl), mLogTag(logTag) {}
    ~SafeBpInterface() override = default;

    // callRemote is used to invoke a synchronous procedure call over Binder
    template <typename Method, typename TagType, typename... Args>
    status_t callRemote(TagType tag, Args&&... args) const {
        static_assert(sizeof(TagType) <= sizeof(uint32_t), "Tag must fit inside uint32_t");

        // Verify that the arguments are compatible with the parameters
        using ParamTuple = typename SafeInterface::ParamExtractor<Method>::ParamTuple;
        static_assert(ArgsMatchParams<std::tuple<Args...>, ParamTuple>::value,
                      "Invalid argument type");

        // Write the input arguments to the data Parcel
        Parcel data;
        data.writeInterfaceToken(this->getInterfaceDescriptor());

        status_t error = writeInputs(&data, std::forward<Args>(args)...);
        if (CC_UNLIKELY(error != NO_ERROR)) {
            // A message will have been logged by writeInputs
            return error;
        }

        // Send the data Parcel to the remote and retrieve the reply parcel
        Parcel reply;
        error = this->remote()->transact(static_cast<uint32_t>(tag), data, &reply);
        if (CC_UNLIKELY(error != NO_ERROR)) {
            ALOG(LOG_ERROR, mLogTag, "Failed to transact (%d)", error);
#if SI_DUMP_CALLSTACKS
            CallStack callStack(mLogTag);
#endif
            return error;
        }

        // Read the outputs from the reply Parcel into the output arguments
        error = readOutputs(reply, std::forward<Args>(args)...);
        if (CC_UNLIKELY(error != NO_ERROR)) {
            // A message will have been logged by readOutputs
            return error;
        }

        // Retrieve the result code from the reply Parcel
        status_t result = NO_ERROR;
        error = reply.readInt32(&result);
        if (CC_UNLIKELY(error != NO_ERROR)) {
            ALOG(LOG_ERROR, mLogTag, "Failed to obtain result");
#if SI_DUMP_CALLSTACKS
            CallStack callStack(mLogTag);
#endif
            return error;
        }
        return result;
    }

    // callRemoteAsync is used to invoke an asynchronous procedure call over Binder
    template <typename Method, typename TagType, typename... Args>
    void callRemoteAsync(TagType tag, Args&&... args) const {
        static_assert(sizeof(TagType) <= sizeof(uint32_t), "Tag must fit inside uint32_t");

        // Verify that the arguments are compatible with the parameters
        using ParamTuple = typename SafeInterface::ParamExtractor<Method>::ParamTuple;
        static_assert(ArgsMatchParams<std::tuple<Args...>, ParamTuple>::value,
                      "Invalid argument type");

        // Write the input arguments to the data Parcel
        Parcel data;
        data.writeInterfaceToken(this->getInterfaceDescriptor());
        status_t error = writeInputs(&data, std::forward<Args>(args)...);
        if (CC_UNLIKELY(error != NO_ERROR)) {
            // A message will have been logged by writeInputs
            return;
        }

        // There will be no data in the reply Parcel since the call is one-way
        Parcel reply;
        error = this->remote()->transact(static_cast<uint32_t>(tag), data, &reply,
                                         IBinder::FLAG_ONEWAY);
        if (CC_UNLIKELY(error != NO_ERROR)) {
            ALOG(LOG_ERROR, mLogTag, "Failed to transact (%d)", error);
#if SI_DUMP_CALLSTACKS
            CallStack callStack(mLogTag);
#endif
        }
    }

private:
    const char* const mLogTag;

    // This struct provides information on whether the decayed types of the elements at Index in the
    // tuple types T and U (that is, the types after stripping cv-qualifiers, removing references,
    // and a few other less common operations) are the same
    template <size_t Index, typename T, typename U>
    struct DecayedElementsMatch {
    private:
        using FirstT = typename std::tuple_element<Index, T>::type;
        using DecayedT = typename std::decay<FirstT>::type;
        using FirstU = typename std::tuple_element<Index, U>::type;
        using DecayedU = typename std::decay<FirstU>::type;

    public:
        static constexpr bool value = std::is_same<DecayedT, DecayedU>::value;
    };

    // When comparing whether the argument types match the parameter types, we first decay them (see
    // DecayedElementsMatch) to avoid falsely flagging, say, T&& against T even though they are
    // equivalent enough for our purposes
    template <typename T, typename U>
    struct ArgsMatchParams {};
    template <typename... Args, typename... Params>
    struct ArgsMatchParams<std::tuple<Args...>, std::tuple<Params...>> {
        static_assert(sizeof...(Args) <= sizeof...(Params), "Too many arguments");
        static_assert(sizeof...(Args) >= sizeof...(Params), "Not enough arguments");

    private:
        template <size_t Index>
        static constexpr typename std::enable_if<(Index < sizeof...(Args)), bool>::type
        elementsMatch() {
            if (!DecayedElementsMatch<Index, std::tuple<Args...>, std::tuple<Params...>>::value) {
                return false;
            }
            return elementsMatch<Index + 1>();
        }
        template <size_t Index>
        static constexpr typename std::enable_if<(Index >= sizeof...(Args)), bool>::type
        elementsMatch() {
            return true;
        }

    public:
        static constexpr bool value = elementsMatch<0>();
    };

    // Since we assume that pointer arguments are outputs, we can use this template struct to
    // determine whether or not a given argument is fundamentally a pointer type and thus an output
    template <typename T>
    struct IsPointerIfDecayed {
    private:
        using Decayed = typename std::decay<T>::type;

    public:
        static constexpr bool value = std::is_pointer<Decayed>::value;
    };

    template <typename T>
    typename std::enable_if<!IsPointerIfDecayed<T>::value, status_t>::type writeIfInput(
            Parcel* data, T&& t) const {
        return SafeInterface::ParcelHandler{mLogTag}.write(data, std::forward<T>(t));
    }
    template <typename T>
    typename std::enable_if<IsPointerIfDecayed<T>::value, status_t>::type writeIfInput(
            Parcel* /*data*/, T&& /*t*/) const {
        return NO_ERROR;
    }

    // This method iterates through all of the arguments, writing them to the data Parcel if they
    // are an input (i.e., if they are not a pointer type)
    template <typename T, typename... Remaining>
    status_t writeInputs(Parcel* data, T&& t, Remaining&&... remaining) const {
        status_t error = writeIfInput(data, std::forward<T>(t));
        if (CC_UNLIKELY(error != NO_ERROR)) {
            // A message will have been logged by writeIfInput
            return error;
        }
        return writeInputs(data, std::forward<Remaining>(remaining)...);
    }
    static status_t writeInputs(Parcel* /*data*/) { return NO_ERROR; }

    template <typename T>
    typename std::enable_if<IsPointerIfDecayed<T>::value, status_t>::type readIfOutput(
            const Parcel& reply, T&& t) const {
        return SafeInterface::ParcelHandler{mLogTag}.read(reply, std::forward<T>(t));
    }
    template <typename T>
    static typename std::enable_if<!IsPointerIfDecayed<T>::value, status_t>::type readIfOutput(
            const Parcel& /*reply*/, T&& /*t*/) {
        return NO_ERROR;
    }

    // Similar to writeInputs except that it reads output arguments from the reply Parcel
    template <typename T, typename... Remaining>
    status_t readOutputs(const Parcel& reply, T&& t, Remaining&&... remaining) const {
        status_t error = readIfOutput(reply, std::forward<T>(t));
        if (CC_UNLIKELY(error != NO_ERROR)) {
            // A message will have been logged by readIfOutput
            return error;
        }
        return readOutputs(reply, std::forward<Remaining>(remaining)...);
    }
    static status_t readOutputs(const Parcel& /*data*/) { return NO_ERROR; }
};

template <typename Interface>
class SafeBnInterface : public BnInterface<Interface> {
public:
    explicit SafeBnInterface(const char* logTag) : mLogTag(logTag) {}

protected:
    template <typename Method>
    status_t callLocal(const Parcel& data, Parcel* reply, Method method) {
        CHECK_INTERFACE(this, data, reply);

        // Since we need to both pass inputs into the call as well as retrieve outputs, we create a
        // "raw" tuple, where the inputs are interleaved with actual, non-pointer versions of the
        // outputs. When we ultimately call into the method, we will pass the addresses of the
        // output arguments instead of their tuple members directly, but the storage will live in
        // the tuple.
        using ParamTuple = typename SafeInterface::ParamExtractor<Method>::ParamTuple;
        typename RawConverter<std::tuple<>, ParamTuple>::type rawArgs{};

        // Read the inputs from the data Parcel into the argument tuple
        status_t error = InputReader<ParamTuple>{mLogTag}.readInputs(data, &rawArgs);
        if (CC_UNLIKELY(error != NO_ERROR)) {
            // A message will have been logged by read
            return error;
        }

        // Call the local method
        status_t result = MethodCaller<ParamTuple>::call(this, method, &rawArgs);

        // Extract the outputs from the argument tuple and write them into the reply Parcel
        error = OutputWriter<ParamTuple>{mLogTag}.writeOutputs(reply, &rawArgs);
        if (CC_UNLIKELY(error != NO_ERROR)) {
            // A message will have been logged by write
            return error;
        }

        // Return the result code in the reply Parcel
        error = reply->writeInt32(result);
        if (CC_UNLIKELY(error != NO_ERROR)) {
            ALOG(LOG_ERROR, mLogTag, "Failed to write result");
#if SI_DUMP_CALLSTACKS
            CallStack callStack(mLogTag);
#endif
            return error;
        }
        return NO_ERROR;
    }

    template <typename Method>
    status_t callLocalAsync(const Parcel& data, Parcel* /*reply*/, Method method) {
        // reply is not actually used by CHECK_INTERFACE
        CHECK_INTERFACE(this, data, reply);

        // Since we need to both pass inputs into the call as well as retrieve outputs, we create a
        // "raw" tuple, where the inputs are interleaved with actual, non-pointer versions of the
        // outputs. When we ultimately call into the method, we will pass the addresses of the
        // output arguments instead of their tuple members directly, but the storage will live in
        // the tuple.
        using ParamTuple = typename SafeInterface::ParamExtractor<Method>::ParamTuple;
        typename RawConverter<std::tuple<>, ParamTuple>::type rawArgs{};

        // Read the inputs from the data Parcel into the argument tuple
        status_t error = InputReader<ParamTuple>{mLogTag}.readInputs(data, &rawArgs);
        if (CC_UNLIKELY(error != NO_ERROR)) {
            // A message will have been logged by read
            return error;
        }

        // Call the local method
        MethodCaller<ParamTuple>::callVoid(this, method, &rawArgs);

        // After calling, there is nothing more to do since asynchronous calls do not return a value
        // to the caller
        return NO_ERROR;
    }

private:
    const char* const mLogTag;

    // RemoveFirst strips the first element from a tuple.
    // For example, given T = std::tuple<A, B, C>, RemoveFirst<T>::type = std::tuple<B, C>
    template <typename T, typename... Args>
    struct RemoveFirst;
    template <typename T, typename... Args>
    struct RemoveFirst<std::tuple<T, Args...>> {
        using type = std::tuple<Args...>;
    };

    // RawConverter strips a tuple down to its fundamental types, discarding both pointers and
    // references. This allows us to allocate storage for both input (non-pointer) arguments and
    // output (pointer) arguments in one tuple.
    // For example, given T = std::tuple<const A&, B*>, RawConverter<T>::type = std::tuple<A, B>
    template <typename Unconverted, typename... Converted>
    struct RawConverter;
    template <typename Unconverted, typename... Converted>
    struct RawConverter<std::tuple<Converted...>, Unconverted> {
    private:
        using ElementType = typename std::tuple_element<0, Unconverted>::type;
        using Decayed = typename std::decay<ElementType>::type;
        using WithoutPointer = typename std::remove_pointer<Decayed>::type;

    public:
        using type = typename RawConverter<std::tuple<Converted..., WithoutPointer>,
                                           typename RemoveFirst<Unconverted>::type>::type;
    };
    template <typename... Converted>
    struct RawConverter<std::tuple<Converted...>, std::tuple<>> {
        using type = std::tuple<Converted...>;
    };

    // This provides a simple way to determine whether the indexed element of Args... is a pointer
    template <size_t I, typename... Args>
    struct ElementIsPointer {
    private:
        using ElementType = typename std::tuple_element<I, std::tuple<Args...>>::type;

    public:
        static constexpr bool value = std::is_pointer<ElementType>::value;
    };

    // This class iterates over the parameter types, and if a given parameter is an input
    // (i.e., is not a pointer), reads the corresponding argument tuple element from the data Parcel
    template <typename... Params>
    class InputReader;
    template <typename... Params>
    class InputReader<std::tuple<Params...>> {
    public:
        explicit InputReader(const char* logTag) : mLogTag(logTag) {}

        // Note that in this case (as opposed to in SafeBpInterface), we iterate using an explicit
        // index (starting with 0 here) instead of using recursion and stripping the first element.
        // This is because in SafeBpInterface we aren't actually operating on a real tuple, but are
        // instead just using a tuple as a convenient container for variadic types, whereas here we
        // can't modify the argument tuple without causing unnecessary copies or moves of the data
        // contained therein.
        template <typename RawTuple>
        status_t readInputs(const Parcel& data, RawTuple* args) {
            return dispatchArg<0>(data, args);
        }

    private:
        const char* const mLogTag;

        template <std::size_t I, typename RawTuple>
        typename std::enable_if<!ElementIsPointer<I, Params...>::value, status_t>::type readIfInput(
                const Parcel& data, RawTuple* args) {
            return SafeInterface::ParcelHandler{mLogTag}.read(data, &std::get<I>(*args));
        }
        template <std::size_t I, typename RawTuple>
        typename std::enable_if<ElementIsPointer<I, Params...>::value, status_t>::type readIfInput(
                const Parcel& /*data*/, RawTuple* /*args*/) {
            return NO_ERROR;
        }

        // Recursively iterate through the arguments
        template <std::size_t I, typename RawTuple>
        typename std::enable_if<(I < sizeof...(Params)), status_t>::type dispatchArg(
                const Parcel& data, RawTuple* args) {
            status_t error = readIfInput<I>(data, args);
            if (CC_UNLIKELY(error != NO_ERROR)) {
                // A message will have been logged in read
                return error;
            }
            return dispatchArg<I + 1>(data, args);
        }
        template <std::size_t I, typename RawTuple>
        typename std::enable_if<(I >= sizeof...(Params)), status_t>::type dispatchArg(
                const Parcel& /*data*/, RawTuple* /*args*/) {
            return NO_ERROR;
        }
    };

    // getForCall uses the types of the parameters to determine whether a given element of the
    // argument tuple is an input, which should be passed directly into the call, or an output, for
    // which its address should be passed into the call
    template <size_t I, typename RawTuple, typename... Params>
    static typename std::enable_if<
            ElementIsPointer<I, Params...>::value,
            typename std::tuple_element<I, std::tuple<Params...>>::type>::type
    getForCall(RawTuple* args) {
        return &std::get<I>(*args);
    }
    template <size_t I, typename RawTuple, typename... Params>
    static typename std::enable_if<
            !ElementIsPointer<I, Params...>::value,
            typename std::tuple_element<I, std::tuple<Params...>>::type>::type&
    getForCall(RawTuple* args) {
        return std::get<I>(*args);
    }

    // This template class uses std::index_sequence and parameter pack expansion to call the given
    // method using the elements of the argument tuple (after those arguments are passed through
    // getForCall to get addresses instead of values for output arguments)
    template <typename... Params>
    struct MethodCaller;
    template <typename... Params>
    struct MethodCaller<std::tuple<Params...>> {
    public:
        // The calls through these to the helper methods are necessary to generate the
        // std::index_sequences used to unpack the argument tuple into the method call
        template <typename Class, typename MemberFunction, typename RawTuple>
        static status_t call(Class* instance, MemberFunction function, RawTuple* args) {
            return callHelper(instance, function, args, std::index_sequence_for<Params...>{});
        }
        template <typename Class, typename MemberFunction, typename RawTuple>
        static void callVoid(Class* instance, MemberFunction function, RawTuple* args) {
            callVoidHelper(instance, function, args, std::index_sequence_for<Params...>{});
        }

    private:
        template <typename Class, typename MemberFunction, typename RawTuple, std::size_t... I>
        static status_t callHelper(Class* instance, MemberFunction function, RawTuple* args,
                                   std::index_sequence<I...> /*unused*/) {
            return (instance->*function)(getForCall<I, RawTuple, Params...>(args)...);
        }
        template <typename Class, typename MemberFunction, typename RawTuple, std::size_t... I>
        static void callVoidHelper(Class* instance, MemberFunction function, RawTuple* args,
                                   std::index_sequence<I...> /*unused*/) {
            (instance->*function)(getForCall<I, RawTuple, Params...>(args)...);
        }
    };

    // This class iterates over the parameter types, and if a given parameter is an output
    // (i.e., is a pointer), writes the corresponding argument tuple element into the reply Parcel
    template <typename... Params>
    struct OutputWriter;
    template <typename... Params>
    struct OutputWriter<std::tuple<Params...>> {
    public:
        explicit OutputWriter(const char* logTag) : mLogTag(logTag) {}

        // See the note on InputReader::readInputs for why this differs from the arguably simpler
        // RemoveFirst approach in SafeBpInterface
        template <typename RawTuple>
        status_t writeOutputs(Parcel* reply, RawTuple* args) {
            return dispatchArg<0>(reply, args);
        }

    private:
        const char* const mLogTag;

        template <std::size_t I, typename RawTuple>
        typename std::enable_if<ElementIsPointer<I, Params...>::value, status_t>::type
        writeIfOutput(Parcel* reply, RawTuple* args) {
            return SafeInterface::ParcelHandler{mLogTag}.write(reply, std::get<I>(*args));
        }
        template <std::size_t I, typename RawTuple>
        typename std::enable_if<!ElementIsPointer<I, Params...>::value, status_t>::type
        writeIfOutput(Parcel* /*reply*/, RawTuple* /*args*/) {
            return NO_ERROR;
        }

        // Recursively iterate through the arguments
        template <std::size_t I, typename RawTuple>
        typename std::enable_if<(I < sizeof...(Params)), status_t>::type dispatchArg(
                Parcel* reply, RawTuple* args) {
            status_t error = writeIfOutput<I>(reply, args);
            if (CC_UNLIKELY(error != NO_ERROR)) {
                // A message will have been logged in read
                return error;
            }
            return dispatchArg<I + 1>(reply, args);
        }
        template <std::size_t I, typename RawTuple>
        typename std::enable_if<(I >= sizeof...(Params)), status_t>::type dispatchArg(
                Parcel* /*reply*/, RawTuple* /*args*/) {
            return NO_ERROR;
        }
    };
};

} // namespace android