summaryrefslogtreecommitdiff
path: root/libs/input/tests/InputEvent_test.cpp
blob: a9655730fca63049b3ba490a6a04e69b2673e25a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <array>
#include <math.h>

#include <android-base/properties.h>
#include <attestation/HmacKeyManager.h>
#include <binder/Parcel.h>
#include <gtest/gtest.h>
#include <gui/constants.h>
#include <input/Input.h>

namespace android {

// Default display id.
static constexpr int32_t DISPLAY_ID = ADISPLAY_ID_DEFAULT;

static constexpr float EPSILON = MotionEvent::ROUNDING_PRECISION;

class BaseTest : public testing::Test {
protected:
    static constexpr std::array<uint8_t, 32> HMAC = {0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  10,
                                                     11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
                                                     22, 23, 24, 25, 26, 27, 28, 29, 30, 31};
};

// --- PointerCoordsTest ---

class PointerCoordsTest : public BaseTest {
};

TEST_F(PointerCoordsTest, ClearSetsBitsToZero) {
    PointerCoords coords;
    coords.clear();

    ASSERT_EQ(0ULL, coords.bits);
    ASSERT_FALSE(coords.isResampled);
}

TEST_F(PointerCoordsTest, AxisValues) {
    PointerCoords coords;
    coords.clear();

    // Check invariants when no axes are present.
    ASSERT_EQ(0, coords.getAxisValue(0))
            << "getAxisValue should return zero because axis is not present";
    ASSERT_EQ(0, coords.getAxisValue(1))
            << "getAxisValue should return zero because axis is not present";

    // Set first axis.
    ASSERT_EQ(OK, coords.setAxisValue(1, 5));
    ASSERT_EQ(5, coords.values[0]);
    ASSERT_EQ(0x4000000000000000ULL, coords.bits);

    ASSERT_EQ(0, coords.getAxisValue(0))
            << "getAxisValue should return zero because axis is not present";
    ASSERT_EQ(5, coords.getAxisValue(1))
            << "getAxisValue should return value of axis";

    // Set an axis with a higher id than all others.  (appending value at the end)
    ASSERT_EQ(OK, coords.setAxisValue(3, 2));
    ASSERT_EQ(0x5000000000000000ULL, coords.bits);
    ASSERT_EQ(5, coords.values[0]);
    ASSERT_EQ(2, coords.values[1]);

    ASSERT_EQ(0, coords.getAxisValue(0))
            << "getAxisValue should return zero because axis is not present";
    ASSERT_EQ(5, coords.getAxisValue(1))
            << "getAxisValue should return value of axis";
    ASSERT_EQ(0, coords.getAxisValue(2))
            << "getAxisValue should return zero because axis is not present";
    ASSERT_EQ(2, coords.getAxisValue(3))
            << "getAxisValue should return value of axis";

    // Set an axis with an id lower than all others.  (prepending value at beginning)
    ASSERT_EQ(OK, coords.setAxisValue(0, 4));
    ASSERT_EQ(0xd000000000000000ULL, coords.bits);
    ASSERT_EQ(4, coords.values[0]);
    ASSERT_EQ(5, coords.values[1]);
    ASSERT_EQ(2, coords.values[2]);

    ASSERT_EQ(4, coords.getAxisValue(0))
            << "getAxisValue should return value of axis";
    ASSERT_EQ(5, coords.getAxisValue(1))
            << "getAxisValue should return value of axis";
    ASSERT_EQ(0, coords.getAxisValue(2))
            << "getAxisValue should return zero because axis is not present";
    ASSERT_EQ(2, coords.getAxisValue(3))
            << "getAxisValue should return value of axis";

    // Set an axis with an id between the others.  (inserting value in the middle)
    ASSERT_EQ(OK, coords.setAxisValue(2, 1));
    ASSERT_EQ(0xf000000000000000ULL, coords.bits);
    ASSERT_EQ(4, coords.values[0]);
    ASSERT_EQ(5, coords.values[1]);
    ASSERT_EQ(1, coords.values[2]);
    ASSERT_EQ(2, coords.values[3]);

    ASSERT_EQ(4, coords.getAxisValue(0))
            << "getAxisValue should return value of axis";
    ASSERT_EQ(5, coords.getAxisValue(1))
            << "getAxisValue should return value of axis";
    ASSERT_EQ(1, coords.getAxisValue(2))
            << "getAxisValue should return value of axis";
    ASSERT_EQ(2, coords.getAxisValue(3))
            << "getAxisValue should return value of axis";

    // Set an existing axis value in place.
    ASSERT_EQ(OK, coords.setAxisValue(1, 6));
    ASSERT_EQ(0xf000000000000000ULL, coords.bits);
    ASSERT_EQ(4, coords.values[0]);
    ASSERT_EQ(6, coords.values[1]);
    ASSERT_EQ(1, coords.values[2]);
    ASSERT_EQ(2, coords.values[3]);

    ASSERT_EQ(4, coords.getAxisValue(0))
            << "getAxisValue should return value of axis";
    ASSERT_EQ(6, coords.getAxisValue(1))
            << "getAxisValue should return value of axis";
    ASSERT_EQ(1, coords.getAxisValue(2))
            << "getAxisValue should return value of axis";
    ASSERT_EQ(2, coords.getAxisValue(3))
            << "getAxisValue should return value of axis";

    // Set maximum number of axes.
    for (size_t axis = 4; axis < PointerCoords::MAX_AXES; axis++) {
        ASSERT_EQ(OK, coords.setAxisValue(axis, axis));
    }
    ASSERT_EQ(PointerCoords::MAX_AXES, __builtin_popcountll(coords.bits));

    // Try to set one more axis beyond maximum number.
    // Ensure bits are unchanged.
    ASSERT_EQ(NO_MEMORY, coords.setAxisValue(PointerCoords::MAX_AXES, 100));
    ASSERT_EQ(PointerCoords::MAX_AXES, __builtin_popcountll(coords.bits));
}

TEST_F(PointerCoordsTest, Parcel) {
    Parcel parcel;

    PointerCoords inCoords;
    inCoords.clear();
    PointerCoords outCoords;

    // Round trip with empty coords.
    inCoords.writeToParcel(&parcel);
    parcel.setDataPosition(0);
    outCoords.readFromParcel(&parcel);

    ASSERT_EQ(0ULL, outCoords.bits);
    ASSERT_FALSE(outCoords.isResampled);

    // Round trip with some values.
    parcel.freeData();
    inCoords.setAxisValue(2, 5);
    inCoords.setAxisValue(5, 8);
    inCoords.isResampled = true;

    inCoords.writeToParcel(&parcel);
    parcel.setDataPosition(0);
    outCoords.readFromParcel(&parcel);

    ASSERT_EQ(outCoords.bits, inCoords.bits);
    ASSERT_EQ(outCoords.values[0], inCoords.values[0]);
    ASSERT_EQ(outCoords.values[1], inCoords.values[1]);
    ASSERT_TRUE(outCoords.isResampled);
}


// --- KeyEventTest ---

class KeyEventTest : public BaseTest {
};

TEST_F(KeyEventTest, Properties) {
    KeyEvent event;

    // Initialize and get properties.
    constexpr nsecs_t ARBITRARY_DOWN_TIME = 1;
    constexpr nsecs_t ARBITRARY_EVENT_TIME = 2;
    const int32_t id = InputEvent::nextId();
    event.initialize(id, 2, AINPUT_SOURCE_GAMEPAD, DISPLAY_ID, HMAC, AKEY_EVENT_ACTION_DOWN,
                     AKEY_EVENT_FLAG_FROM_SYSTEM, AKEYCODE_BUTTON_X, 121, AMETA_ALT_ON, 1,
                     ARBITRARY_DOWN_TIME, ARBITRARY_EVENT_TIME);

    ASSERT_EQ(id, event.getId());
    ASSERT_EQ(InputEventType::KEY, event.getType());
    ASSERT_EQ(2, event.getDeviceId());
    ASSERT_EQ(AINPUT_SOURCE_GAMEPAD, event.getSource());
    ASSERT_EQ(DISPLAY_ID, event.getDisplayId());
    EXPECT_EQ(HMAC, event.getHmac());
    ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, event.getAction());
    ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, event.getFlags());
    ASSERT_EQ(AKEYCODE_BUTTON_X, event.getKeyCode());
    ASSERT_EQ(121, event.getScanCode());
    ASSERT_EQ(AMETA_ALT_ON, event.getMetaState());
    ASSERT_EQ(1, event.getRepeatCount());
    ASSERT_EQ(ARBITRARY_DOWN_TIME, event.getDownTime());
    ASSERT_EQ(ARBITRARY_EVENT_TIME, event.getEventTime());

    // Set source.
    event.setSource(AINPUT_SOURCE_JOYSTICK);
    ASSERT_EQ(AINPUT_SOURCE_JOYSTICK, event.getSource());

    // Set display id.
    constexpr int32_t newDisplayId = 2;
    event.setDisplayId(newDisplayId);
    ASSERT_EQ(newDisplayId, event.getDisplayId());
}


// --- MotionEventTest ---

class MotionEventTest : public BaseTest {
protected:
    static constexpr nsecs_t ARBITRARY_DOWN_TIME = 1;
    static constexpr nsecs_t ARBITRARY_EVENT_TIME = 2;
    static constexpr float X_SCALE = 2.0;
    static constexpr float Y_SCALE = 3.0;
    static constexpr float X_OFFSET = 1;
    static constexpr float Y_OFFSET = 1.1;
    static constexpr float RAW_X_SCALE = 4.0;
    static constexpr float RAW_Y_SCALE = -5.0;
    static constexpr float RAW_X_OFFSET = 12;
    static constexpr float RAW_Y_OFFSET = -41.1;

    void SetUp() override;

    int32_t mId;
    ui::Transform mTransform;
    ui::Transform mRawTransform;
    PointerProperties mPointerProperties[2];
    struct Sample {
        PointerCoords pointerCoords[2];
    };
    std::array<Sample, 3> mSamples{};

    void initializeEventWithHistory(MotionEvent* event);
    void assertEqualsEventWithHistory(const MotionEvent* event);
};

void MotionEventTest::SetUp() {
    mId = InputEvent::nextId();
    mTransform.set({X_SCALE, 0, X_OFFSET, 0, Y_SCALE, Y_OFFSET, 0, 0, 1});
    mRawTransform.set({RAW_X_SCALE, 0, RAW_X_OFFSET, 0, RAW_Y_SCALE, RAW_Y_OFFSET, 0, 0, 1});

    mPointerProperties[0].clear();
    mPointerProperties[0].id = 1;
    mPointerProperties[0].toolType = ToolType::FINGER;
    mPointerProperties[1].clear();
    mPointerProperties[1].id = 2;
    mPointerProperties[1].toolType = ToolType::STYLUS;

    mSamples[0].pointerCoords[0].clear();
    mSamples[0].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, 10);
    mSamples[0].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, 11);
    mSamples[0].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 12);
    mSamples[0].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_SIZE, 13);
    mSamples[0].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, 14);
    mSamples[0].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR, 15);
    mSamples[0].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, 16);
    mSamples[0].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR, 17);
    mSamples[0].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, 18);
    mSamples[0].pointerCoords[0].isResampled = true;
    mSamples[0].pointerCoords[1].clear();
    mSamples[0].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_X, 20);
    mSamples[0].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_Y, 21);
    mSamples[0].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 22);
    mSamples[0].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_SIZE, 23);
    mSamples[0].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, 24);
    mSamples[0].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR, 25);
    mSamples[0].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, 26);
    mSamples[0].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR, 27);
    mSamples[0].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, 28);

    mSamples[1].pointerCoords[0].clear();
    mSamples[1].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, 110);
    mSamples[1].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, 111);
    mSamples[1].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 112);
    mSamples[1].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_SIZE, 113);
    mSamples[1].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, 114);
    mSamples[1].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR, 115);
    mSamples[1].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, 116);
    mSamples[1].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR, 117);
    mSamples[1].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, 118);
    mSamples[1].pointerCoords[0].isResampled = true;
    mSamples[1].pointerCoords[1].clear();
    mSamples[1].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_X, 120);
    mSamples[1].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_Y, 121);
    mSamples[1].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 122);
    mSamples[1].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_SIZE, 123);
    mSamples[1].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, 124);
    mSamples[1].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR, 125);
    mSamples[1].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, 126);
    mSamples[1].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR, 127);
    mSamples[1].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, 128);
    mSamples[1].pointerCoords[1].isResampled = true;

    mSamples[2].pointerCoords[0].clear();
    mSamples[2].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, 210);
    mSamples[2].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, 211);
    mSamples[2].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 212);
    mSamples[2].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_SIZE, 213);
    mSamples[2].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, 214);
    mSamples[2].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR, 215);
    mSamples[2].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, 216);
    mSamples[2].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR, 217);
    mSamples[2].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, 218);
    mSamples[2].pointerCoords[1].clear();
    mSamples[2].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_X, 220);
    mSamples[2].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_Y, 221);
    mSamples[2].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 222);
    mSamples[2].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_SIZE, 223);
    mSamples[2].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, 224);
    mSamples[2].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR, 225);
    mSamples[2].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, 226);
    mSamples[2].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR, 227);
    mSamples[2].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, 228);
}

void MotionEventTest::initializeEventWithHistory(MotionEvent* event) {
    event->initialize(mId, 2, AINPUT_SOURCE_TOUCHSCREEN, DISPLAY_ID, HMAC,
                      AMOTION_EVENT_ACTION_MOVE, 0, AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED,
                      AMOTION_EVENT_EDGE_FLAG_TOP, AMETA_ALT_ON, AMOTION_EVENT_BUTTON_PRIMARY,
                      MotionClassification::NONE, mTransform, 2.0f, 2.1f,
                      AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_CURSOR_POSITION,
                      mRawTransform, ARBITRARY_DOWN_TIME, ARBITRARY_EVENT_TIME, 2,
                      mPointerProperties, mSamples[0].pointerCoords);
    event->addSample(ARBITRARY_EVENT_TIME + 1, mSamples[1].pointerCoords);
    event->addSample(ARBITRARY_EVENT_TIME + 2, mSamples[2].pointerCoords);
}

void MotionEventTest::assertEqualsEventWithHistory(const MotionEvent* event) {
    // Check properties.
    ASSERT_EQ(mId, event->getId());
    ASSERT_EQ(InputEventType::MOTION, event->getType());
    ASSERT_EQ(2, event->getDeviceId());
    ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, event->getSource());
    ASSERT_EQ(DISPLAY_ID, event->getDisplayId());
    EXPECT_EQ(HMAC, event->getHmac());
    ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, event->getAction());
    ASSERT_EQ(AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED, event->getFlags());
    ASSERT_EQ(AMOTION_EVENT_EDGE_FLAG_TOP, event->getEdgeFlags());
    ASSERT_EQ(AMETA_ALT_ON, event->getMetaState());
    ASSERT_EQ(AMOTION_EVENT_BUTTON_PRIMARY, event->getButtonState());
    ASSERT_EQ(MotionClassification::NONE, event->getClassification());
    EXPECT_EQ(mTransform, event->getTransform());
    ASSERT_EQ(X_OFFSET, event->getXOffset());
    ASSERT_EQ(Y_OFFSET, event->getYOffset());
    ASSERT_EQ(2.0f, event->getXPrecision());
    ASSERT_EQ(2.1f, event->getYPrecision());
    ASSERT_EQ(ARBITRARY_DOWN_TIME, event->getDownTime());

    ASSERT_EQ(2U, event->getPointerCount());
    ASSERT_EQ(1, event->getPointerId(0));
    ASSERT_EQ(ToolType::FINGER, event->getToolType(0));
    ASSERT_EQ(2, event->getPointerId(1));
    ASSERT_EQ(ToolType::STYLUS, event->getToolType(1));

    ASSERT_EQ(2U, event->getHistorySize());

    // Check data.
    ASSERT_EQ(ARBITRARY_EVENT_TIME, event->getHistoricalEventTime(0));
    ASSERT_EQ(ARBITRARY_EVENT_TIME + 1, event->getHistoricalEventTime(1));
    ASSERT_EQ(ARBITRARY_EVENT_TIME + 2, event->getEventTime());

    // Ensure the underlying PointerCoords are identical.
    for (int sampleIdx = 0; sampleIdx < 3; sampleIdx++) {
        for (int pointerIdx = 0; pointerIdx < 2; pointerIdx++) {
            ASSERT_EQ(mSamples[sampleIdx].pointerCoords[pointerIdx],
                      event->getSamplePointerCoords()[sampleIdx * 2 + pointerIdx]);
        }
    }

    ASSERT_NEAR(11, event->getHistoricalRawPointerCoords(0, 0)->getAxisValue(AMOTION_EVENT_AXIS_Y),
                EPSILON);
    ASSERT_NEAR(21, event->getHistoricalRawPointerCoords(1, 0)->getAxisValue(AMOTION_EVENT_AXIS_Y),
                EPSILON);
    ASSERT_NEAR(111, event->getHistoricalRawPointerCoords(0, 1)->getAxisValue(AMOTION_EVENT_AXIS_Y),
                EPSILON);
    ASSERT_NEAR(121, event->getHistoricalRawPointerCoords(1, 1)->getAxisValue(AMOTION_EVENT_AXIS_Y),
                EPSILON);
    ASSERT_NEAR(211, event->getRawPointerCoords(0)->getAxisValue(AMOTION_EVENT_AXIS_Y), EPSILON);
    ASSERT_NEAR(221, event->getRawPointerCoords(1)->getAxisValue(AMOTION_EVENT_AXIS_Y), EPSILON);

    ASSERT_NEAR(RAW_Y_OFFSET + 11 * RAW_Y_SCALE,
                event->getHistoricalRawAxisValue(AMOTION_EVENT_AXIS_Y, 0, 0), EPSILON);
    ASSERT_NEAR(RAW_Y_OFFSET + 21 * RAW_Y_SCALE,
                event->getHistoricalRawAxisValue(AMOTION_EVENT_AXIS_Y, 1, 0), EPSILON);
    ASSERT_NEAR(RAW_Y_OFFSET + 111 * RAW_Y_SCALE,
                event->getHistoricalRawAxisValue(AMOTION_EVENT_AXIS_Y, 0, 1), EPSILON);
    ASSERT_NEAR(RAW_Y_OFFSET + 121 * RAW_Y_SCALE,
                event->getHistoricalRawAxisValue(AMOTION_EVENT_AXIS_Y, 1, 1), EPSILON);
    ASSERT_NEAR(RAW_Y_OFFSET + 211 * RAW_Y_SCALE, event->getRawAxisValue(AMOTION_EVENT_AXIS_Y, 0),
                EPSILON);
    ASSERT_NEAR(RAW_Y_OFFSET + 221 * RAW_Y_SCALE, event->getRawAxisValue(AMOTION_EVENT_AXIS_Y, 1),
                EPSILON);

    ASSERT_NEAR(RAW_X_OFFSET + 10 * RAW_X_SCALE, event->getHistoricalRawX(0, 0), EPSILON);
    ASSERT_NEAR(RAW_X_OFFSET + 20 * RAW_X_SCALE, event->getHistoricalRawX(1, 0), EPSILON);
    ASSERT_NEAR(RAW_X_OFFSET + 110 * RAW_X_SCALE, event->getHistoricalRawX(0, 1), EPSILON);
    ASSERT_NEAR(RAW_X_OFFSET + 120 * RAW_X_SCALE, event->getHistoricalRawX(1, 1), EPSILON);
    ASSERT_NEAR(RAW_X_OFFSET + 210 * RAW_X_SCALE, event->getRawX(0), EPSILON);
    ASSERT_NEAR(RAW_X_OFFSET + 220 * RAW_X_SCALE, event->getRawX(1), EPSILON);

    ASSERT_NEAR(RAW_Y_OFFSET + 11 * RAW_Y_SCALE, event->getHistoricalRawY(0, 0), EPSILON);
    ASSERT_NEAR(RAW_Y_OFFSET + 21 * RAW_Y_SCALE, event->getHistoricalRawY(1, 0), EPSILON);
    ASSERT_NEAR(RAW_Y_OFFSET + 111 * RAW_Y_SCALE, event->getHistoricalRawY(0, 1), EPSILON);
    ASSERT_NEAR(RAW_Y_OFFSET + 121 * RAW_Y_SCALE, event->getHistoricalRawY(1, 1), EPSILON);
    ASSERT_NEAR(RAW_Y_OFFSET + 211 * RAW_Y_SCALE, event->getRawY(0), EPSILON);
    ASSERT_NEAR(RAW_Y_OFFSET + 221 * RAW_Y_SCALE, event->getRawY(1), EPSILON);

    ASSERT_NEAR(X_OFFSET + 10 * X_SCALE, event->getHistoricalX(0, 0), EPSILON);
    ASSERT_NEAR(X_OFFSET + 20 * X_SCALE, event->getHistoricalX(1, 0), EPSILON);
    ASSERT_NEAR(X_OFFSET + 110 * X_SCALE, event->getHistoricalX(0, 1), EPSILON);
    ASSERT_NEAR(X_OFFSET + 120 * X_SCALE, event->getHistoricalX(1, 1), EPSILON);
    ASSERT_NEAR(X_OFFSET + 210 * X_SCALE, event->getX(0), EPSILON);
    ASSERT_NEAR(X_OFFSET + 220 * X_SCALE, event->getX(1), EPSILON);

    ASSERT_NEAR(Y_OFFSET + 11 * Y_SCALE, event->getHistoricalY(0, 0), EPSILON);
    ASSERT_NEAR(Y_OFFSET + 21 * Y_SCALE, event->getHistoricalY(1, 0), EPSILON);
    ASSERT_NEAR(Y_OFFSET + 111 * Y_SCALE, event->getHistoricalY(0, 1), EPSILON);
    ASSERT_NEAR(Y_OFFSET + 121 * Y_SCALE, event->getHistoricalY(1, 1), EPSILON);
    ASSERT_NEAR(Y_OFFSET + 211 * Y_SCALE, event->getY(0), EPSILON);
    ASSERT_NEAR(Y_OFFSET + 221 * Y_SCALE, event->getY(1), EPSILON);

    ASSERT_EQ(12, event->getHistoricalPressure(0, 0));
    ASSERT_EQ(22, event->getHistoricalPressure(1, 0));
    ASSERT_EQ(112, event->getHistoricalPressure(0, 1));
    ASSERT_EQ(122, event->getHistoricalPressure(1, 1));
    ASSERT_EQ(212, event->getPressure(0));
    ASSERT_EQ(222, event->getPressure(1));

    ASSERT_EQ(13, event->getHistoricalSize(0, 0));
    ASSERT_EQ(23, event->getHistoricalSize(1, 0));
    ASSERT_EQ(113, event->getHistoricalSize(0, 1));
    ASSERT_EQ(123, event->getHistoricalSize(1, 1));
    ASSERT_EQ(213, event->getSize(0));
    ASSERT_EQ(223, event->getSize(1));

    ASSERT_EQ(14, event->getHistoricalTouchMajor(0, 0));
    ASSERT_EQ(24, event->getHistoricalTouchMajor(1, 0));
    ASSERT_EQ(114, event->getHistoricalTouchMajor(0, 1));
    ASSERT_EQ(124, event->getHistoricalTouchMajor(1, 1));
    ASSERT_EQ(214, event->getTouchMajor(0));
    ASSERT_EQ(224, event->getTouchMajor(1));

    ASSERT_EQ(15, event->getHistoricalTouchMinor(0, 0));
    ASSERT_EQ(25, event->getHistoricalTouchMinor(1, 0));
    ASSERT_EQ(115, event->getHistoricalTouchMinor(0, 1));
    ASSERT_EQ(125, event->getHistoricalTouchMinor(1, 1));
    ASSERT_EQ(215, event->getTouchMinor(0));
    ASSERT_EQ(225, event->getTouchMinor(1));

    ASSERT_EQ(16, event->getHistoricalToolMajor(0, 0));
    ASSERT_EQ(26, event->getHistoricalToolMajor(1, 0));
    ASSERT_EQ(116, event->getHistoricalToolMajor(0, 1));
    ASSERT_EQ(126, event->getHistoricalToolMajor(1, 1));
    ASSERT_EQ(216, event->getToolMajor(0));
    ASSERT_EQ(226, event->getToolMajor(1));

    ASSERT_EQ(17, event->getHistoricalToolMinor(0, 0));
    ASSERT_EQ(27, event->getHistoricalToolMinor(1, 0));
    ASSERT_EQ(117, event->getHistoricalToolMinor(0, 1));
    ASSERT_EQ(127, event->getHistoricalToolMinor(1, 1));
    ASSERT_EQ(217, event->getToolMinor(0));
    ASSERT_EQ(227, event->getToolMinor(1));

    // Calculate the orientation after scaling, keeping in mind that an orientation of 0 is "up",
    // and the positive y direction is "down".
    auto toScaledOrientation = [](float angle) {
        const float x = sinf(angle) * X_SCALE;
        const float y = -cosf(angle) * Y_SCALE;
        return atan2f(x, -y);
    };
    ASSERT_EQ(toScaledOrientation(18), event->getHistoricalOrientation(0, 0));
    ASSERT_EQ(toScaledOrientation(28), event->getHistoricalOrientation(1, 0));
    ASSERT_EQ(toScaledOrientation(118), event->getHistoricalOrientation(0, 1));
    ASSERT_EQ(toScaledOrientation(128), event->getHistoricalOrientation(1, 1));
    ASSERT_EQ(toScaledOrientation(218), event->getOrientation(0));
    ASSERT_EQ(toScaledOrientation(228), event->getOrientation(1));

    ASSERT_TRUE(event->isResampled(0, 0));
    ASSERT_FALSE(event->isResampled(1, 0));
    ASSERT_TRUE(event->isResampled(0, 1));
    ASSERT_TRUE(event->isResampled(1, 1));
    ASSERT_FALSE(event->isResampled(0, 2));
    ASSERT_FALSE(event->isResampled(1, 2));
}

TEST_F(MotionEventTest, Properties) {
    MotionEvent event;

    // Initialize, add samples and check properties.
    initializeEventWithHistory(&event);
    ASSERT_NO_FATAL_FAILURE(assertEqualsEventWithHistory(&event));

    // Set source.
    event.setSource(AINPUT_SOURCE_JOYSTICK);
    ASSERT_EQ(AINPUT_SOURCE_JOYSTICK, event.getSource());

    // Set displayId.
    constexpr int32_t newDisplayId = 2;
    event.setDisplayId(newDisplayId);
    ASSERT_EQ(newDisplayId, event.getDisplayId());

    // Set action.
    event.setAction(AMOTION_EVENT_ACTION_CANCEL);
    ASSERT_EQ(AMOTION_EVENT_ACTION_CANCEL, event.getAction());

    // Set meta state.
    event.setMetaState(AMETA_CTRL_ON);
    ASSERT_EQ(AMETA_CTRL_ON, event.getMetaState());
}

TEST_F(MotionEventTest, CopyFrom_KeepHistory) {
    MotionEvent event;
    initializeEventWithHistory(&event);

    MotionEvent copy;
    copy.copyFrom(&event, /*keepHistory=*/true);

    ASSERT_NO_FATAL_FAILURE(assertEqualsEventWithHistory(&event));
}

TEST_F(MotionEventTest, CopyFrom_DoNotKeepHistory) {
    MotionEvent event;
    initializeEventWithHistory(&event);

    MotionEvent copy;
    copy.copyFrom(&event, /*keepHistory=*/false);

    ASSERT_EQ(event.getPointerCount(), copy.getPointerCount());
    ASSERT_EQ(0U, copy.getHistorySize());

    ASSERT_EQ(event.getPointerId(0), copy.getPointerId(0));
    ASSERT_EQ(event.getPointerId(1), copy.getPointerId(1));

    ASSERT_EQ(event.getEventTime(), copy.getEventTime());

    ASSERT_EQ(event.getX(0), copy.getX(0));
}

TEST_F(MotionEventTest, OffsetLocation) {
    MotionEvent event;
    initializeEventWithHistory(&event);

    event.offsetLocation(5.0f, -2.0f);

    ASSERT_EQ(X_OFFSET + 5.0f, event.getXOffset());
    ASSERT_EQ(Y_OFFSET - 2.0f, event.getYOffset());
}

TEST_F(MotionEventTest, Scale) {
    MotionEvent event;
    initializeEventWithHistory(&event);
    const float unscaledOrientation = event.getOrientation(0);

    event.scale(2.0f);

    ASSERT_EQ(X_OFFSET * 2, event.getXOffset());
    ASSERT_EQ(Y_OFFSET * 2, event.getYOffset());

    ASSERT_NEAR((RAW_X_OFFSET + 210 * RAW_X_SCALE) * 2, event.getRawX(0), EPSILON);
    ASSERT_NEAR((RAW_Y_OFFSET + 211 * RAW_Y_SCALE) * 2, event.getRawY(0), EPSILON);
    ASSERT_NEAR((X_OFFSET + 210 * X_SCALE) * 2, event.getX(0), EPSILON);
    ASSERT_NEAR((Y_OFFSET + 211 * Y_SCALE) * 2, event.getY(0), EPSILON);
    ASSERT_EQ(212, event.getPressure(0));
    ASSERT_EQ(213, event.getSize(0));
    ASSERT_EQ(214 * 2, event.getTouchMajor(0));
    ASSERT_EQ(215 * 2, event.getTouchMinor(0));
    ASSERT_EQ(216 * 2, event.getToolMajor(0));
    ASSERT_EQ(217 * 2, event.getToolMinor(0));
    ASSERT_EQ(unscaledOrientation, event.getOrientation(0));
}

TEST_F(MotionEventTest, Parcel) {
    Parcel parcel;

    MotionEvent inEvent;
    initializeEventWithHistory(&inEvent);
    MotionEvent outEvent;

    // Round trip.
    inEvent.writeToParcel(&parcel);
    parcel.setDataPosition(0);
    outEvent.readFromParcel(&parcel);

    ASSERT_NO_FATAL_FAILURE(assertEqualsEventWithHistory(&outEvent));
}

static void setRotationMatrix(std::array<float, 9>& matrix, float angle) {
    float sin = sinf(angle);
    float cos = cosf(angle);
    matrix[0] = cos;
    matrix[1] = -sin;
    matrix[2] = 0;
    matrix[3] = sin;
    matrix[4] = cos;
    matrix[5] = 0;
    matrix[6] = 0;
    matrix[7] = 0;
    matrix[8] = 1.0f;
}

TEST_F(MotionEventTest, Transform) {
    // Generate some points on a circle.
    // Each point 'i' is a point on a circle of radius ROTATION centered at (3,2) at an angle
    // of ARC * i degrees clockwise relative to the Y axis.
    // The geometrical representation is irrelevant to the test, it's just easy to generate
    // and check rotation.  We set the orientation to the same angle.
    // Coordinate system: down is increasing Y, right is increasing X.
    static constexpr float PI_180 = float(M_PI / 180);
    static constexpr float RADIUS = 10;
    static constexpr float ARC = 36;
    static constexpr float ROTATION = ARC * 2;

    const size_t pointerCount = 11;
    PointerProperties pointerProperties[pointerCount];
    PointerCoords pointerCoords[pointerCount];
    for (size_t i = 0; i < pointerCount; i++) {
        float angle = float(i * ARC * PI_180);
        pointerProperties[i].clear();
        pointerProperties[i].id = i;
        pointerCoords[i].clear();
        pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_X, sinf(angle) * RADIUS + 3);
        pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_Y, -cosf(angle) * RADIUS + 2);
        pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, angle);
    }
    MotionEvent event;
    ui::Transform identityTransform;
    event.initialize(InputEvent::nextId(), /*deviceId=*/0, AINPUT_SOURCE_TOUCHSCREEN, DISPLAY_ID,
                     INVALID_HMAC, AMOTION_EVENT_ACTION_MOVE, /*actionButton=*/0, /*flags=*/0,
                     AMOTION_EVENT_EDGE_FLAG_NONE, AMETA_NONE, /*buttonState=*/0,
                     MotionClassification::NONE, identityTransform, /*xPrecision=*/0,
                     /*yPrecision=*/0, /*xCursorPosition=*/3 + RADIUS, /*yCursorPosition=*/2,
                     identityTransform, /*downTime=*/0, /*eventTime=*/0, pointerCount,
                     pointerProperties, pointerCoords);
    float originalRawX = 0 + 3;
    float originalRawY = -RADIUS + 2;

    // Check original raw X and Y assumption.
    ASSERT_NEAR(originalRawX, event.getRawX(0), 0.001);
    ASSERT_NEAR(originalRawY, event.getRawY(0), 0.001);

    // Now translate the motion event so the circle's origin is at (0,0).
    event.offsetLocation(-3, -2);

    // Offsetting the location should preserve the raw X and Y of the first point.
    ASSERT_NEAR(originalRawX, event.getRawX(0), 0.001);
    ASSERT_NEAR(originalRawY, event.getRawY(0), 0.001);

    // Apply a rotation about the origin by ROTATION degrees clockwise.
    std::array<float, 9> matrix;
    setRotationMatrix(matrix, ROTATION * PI_180);
    event.transform(matrix);

    // Check the points.
    for (size_t i = 0; i < pointerCount; i++) {
        float angle = float((i * ARC + ROTATION) * PI_180);
        ASSERT_NEAR(sinf(angle) * RADIUS, event.getX(i), 0.001);
        ASSERT_NEAR(-cosf(angle) * RADIUS, event.getY(i), 0.001);
        ASSERT_NEAR(tanf(angle), tanf(event.getOrientation(i)), 0.1);
    }

    // Check cursor positions. The original cursor position is at (3 + RADIUS, 2), where the center
    // of the circle is (3, 2), so the cursor position is to the right of the center of the circle.
    // The choice of triangular functions in this test defines the angle of rotation clockwise
    // relative to the y-axis. Therefore the cursor position's angle is 90 degrees. Here we swap the
    // triangular function so that we don't have to add the 90 degrees.
    ASSERT_NEAR(cosf(PI_180 * ROTATION) * RADIUS, event.getXCursorPosition(), 0.001);
    ASSERT_NEAR(sinf(PI_180 * ROTATION) * RADIUS, event.getYCursorPosition(), 0.001);

    // Applying the transformation should preserve the raw X and Y of the first point.
    ASSERT_NEAR(originalRawX, event.getRawX(0), 0.001);
    ASSERT_NEAR(originalRawY, event.getRawY(0), 0.001);
}

MotionEvent createMotionEvent(int32_t source, uint32_t action, float x, float y, float dx, float dy,
                              const ui::Transform& transform, const ui::Transform& rawTransform) {
    std::vector<PointerProperties> pointerProperties;
    pointerProperties.push_back(PointerProperties{/*id=*/0, ToolType::FINGER});
    std::vector<PointerCoords> pointerCoords;
    pointerCoords.emplace_back().clear();
    pointerCoords.back().setAxisValue(AMOTION_EVENT_AXIS_X, x);
    pointerCoords.back().setAxisValue(AMOTION_EVENT_AXIS_Y, y);
    pointerCoords.back().setAxisValue(AMOTION_EVENT_AXIS_RELATIVE_X, dx);
    pointerCoords.back().setAxisValue(AMOTION_EVENT_AXIS_RELATIVE_Y, dy);
    nsecs_t eventTime = systemTime(SYSTEM_TIME_MONOTONIC);
    MotionEvent event;
    event.initialize(InputEvent::nextId(), /* deviceId */ 1, source,
                     /* displayId */ 0, INVALID_HMAC, action,
                     /* actionButton */ 0, /* flags */ 0, /* edgeFlags */ 0, AMETA_NONE,
                     /* buttonState */ 0, MotionClassification::NONE, transform,
                     /* xPrecision */ 0, /* yPrecision */ 0, AMOTION_EVENT_INVALID_CURSOR_POSITION,
                     AMOTION_EVENT_INVALID_CURSOR_POSITION, rawTransform, eventTime, eventTime,
                     pointerCoords.size(), pointerProperties.data(), pointerCoords.data());
    return event;
}

MotionEvent createTouchDownEvent(float x, float y, float dx, float dy,
                                 const ui::Transform& transform,
                                 const ui::Transform& rawTransform) {
    return createMotionEvent(AINPUT_SOURCE_TOUCHSCREEN, AMOTION_EVENT_ACTION_DOWN, x, y, dx, dy,
                             transform, rawTransform);
}

TEST_F(MotionEventTest, ApplyTransform) {
    // Create a rotate-90 transform with an offset (like a window which isn't fullscreen).
    ui::Transform identity;
    ui::Transform transform(ui::Transform::ROT_90, 800, 400);
    transform.set(transform.tx() + 20, transform.ty() + 40);
    ui::Transform rawTransform(ui::Transform::ROT_90, 800, 400);
    MotionEvent event = createTouchDownEvent(60, 100, 42, 96, transform, rawTransform);
    ASSERT_EQ(700, event.getRawX(0));
    ASSERT_EQ(60, event.getRawY(0));
    ASSERT_NE(event.getRawX(0), event.getX(0));
    ASSERT_NE(event.getRawY(0), event.getY(0));
    // Relative values should be rotated but not translated.
    ASSERT_EQ(-96, event.getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_X, 0));
    ASSERT_EQ(42, event.getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_Y, 0));

    MotionEvent changedEvent = createTouchDownEvent(60, 100, 42, 96, identity, identity);
    const std::array<float, 9> rowMajor{transform[0][0], transform[1][0], transform[2][0],
                                        transform[0][1], transform[1][1], transform[2][1],
                                        transform[0][2], transform[1][2], transform[2][2]};
    changedEvent.applyTransform(rowMajor);

    // transformContent effectively rotates the raw coordinates, so those should now include
    // both rotation AND offset.
    ASSERT_EQ(720, changedEvent.getRawX(0));
    ASSERT_EQ(100, changedEvent.getRawY(0));
    // Relative values should be rotated but not translated.
    ASSERT_EQ(-96, event.getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_X, 0));
    ASSERT_EQ(42, event.getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_Y, 0));

    // The transformed output should be the same then.
    ASSERT_NEAR(event.getX(0), changedEvent.getX(0), 0.001);
    ASSERT_NEAR(event.getY(0), changedEvent.getY(0), 0.001);
    ASSERT_NEAR(event.getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_X, 0),
                changedEvent.getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_X, 0), 0.001);
    ASSERT_NEAR(event.getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_Y, 0),
                changedEvent.getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_Y, 0), 0.001);
}

TEST_F(MotionEventTest, JoystickAndTouchpadAreNotTransformed) {
    constexpr static std::array kNonTransformedSources =
            {std::pair(AINPUT_SOURCE_TOUCHPAD, AMOTION_EVENT_ACTION_DOWN),
             std::pair(AINPUT_SOURCE_JOYSTICK, AMOTION_EVENT_ACTION_MOVE),
             std::pair(AINPUT_SOURCE_MOUSE_RELATIVE, AMOTION_EVENT_ACTION_MOVE)};
    // Create a rotate-90 transform with an offset (like a window which isn't fullscreen).
    ui::Transform transform(ui::Transform::ROT_90, 800, 400);
    transform.set(transform.tx() + 20, transform.ty() + 40);

    for (const auto& [source, action] : kNonTransformedSources) {
        const MotionEvent event =
                createMotionEvent(source, action, 60, 100, 0, 0, transform, transform);

        // These events should not be transformed in any way.
        ASSERT_EQ(60, event.getX(0));
        ASSERT_EQ(100, event.getY(0));
        ASSERT_EQ(event.getRawX(0), event.getX(0));
        ASSERT_EQ(event.getRawY(0), event.getY(0));
    }
}

TEST_F(MotionEventTest, NonPointerSourcesAreNotTranslated) {
    constexpr static std::array kNonPointerSources = {std::pair(AINPUT_SOURCE_TRACKBALL,
                                                                AMOTION_EVENT_ACTION_DOWN),
                                                      std::pair(AINPUT_SOURCE_TOUCH_NAVIGATION,
                                                                AMOTION_EVENT_ACTION_MOVE)};
    // Create a rotate-90 transform with an offset (like a window which isn't fullscreen).
    ui::Transform transform(ui::Transform::ROT_90, 800, 400);
    transform.set(transform.tx() + 20, transform.ty() + 40);

    for (const auto& [source, action] : kNonPointerSources) {
        const MotionEvent event =
                createMotionEvent(source, action, 60, 100, 42, 96, transform, transform);

        // Since this event comes from a non-pointer source, it should include rotation but not
        // translation/offset.
        ASSERT_EQ(-100, event.getX(0));
        ASSERT_EQ(60, event.getY(0));
        ASSERT_EQ(event.getRawX(0), event.getX(0));
        ASSERT_EQ(event.getRawY(0), event.getY(0));
    }
}

TEST_F(MotionEventTest, AxesAreCorrectlyTransformed) {
    const ui::Transform identity;
    ui::Transform transform;
    transform.set({1.1, -2.2, 3.3, -4.4, 5.5, -6.6, 0, 0, 1});
    ui::Transform rawTransform;
    rawTransform.set({-6.6, 5.5, -4.4, 3.3, -2.2, 1.1, 0, 0, 1});
    auto transformWithoutTranslation = [](const ui::Transform& t, float x, float y) {
        auto newPoint = t.transform(x, y);
        auto newOrigin = t.transform(0, 0);
        return newPoint - newOrigin;
    };

    const MotionEvent event = createTouchDownEvent(60, 100, 42, 96, transform, rawTransform);

    // The x and y axes should have the window transform applied.
    const auto newPoint = transform.transform(60, 100);
    ASSERT_NEAR(newPoint.x, event.getX(0), EPSILON);
    ASSERT_NEAR(newPoint.y, event.getY(0), EPSILON);

    // The raw values should have the display transform applied.
    const auto raw = rawTransform.transform(60, 100);
    ASSERT_NEAR(raw.x, event.getRawX(0), EPSILON);
    ASSERT_NEAR(raw.y, event.getRawY(0), EPSILON);

    // Relative values should have the window transform applied without any translation.
    const auto rel = transformWithoutTranslation(transform, 42, 96);
    ASSERT_NEAR(rel.x, event.getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_X, 0), EPSILON);
    ASSERT_NEAR(rel.y, event.getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_Y, 0), EPSILON);
}

TEST_F(MotionEventTest, Initialize_SetsClassification) {
    std::array<MotionClassification, 3> classifications = {
            MotionClassification::NONE,
            MotionClassification::AMBIGUOUS_GESTURE,
            MotionClassification::DEEP_PRESS,
    };

    MotionEvent event;
    constexpr size_t pointerCount = 1;
    PointerProperties pointerProperties[pointerCount];
    PointerCoords pointerCoords[pointerCount];
    for (size_t i = 0; i < pointerCount; i++) {
        pointerProperties[i].clear();
        pointerProperties[i].id = i;
        pointerCoords[i].clear();
    }

    ui::Transform identityTransform;
    for (MotionClassification classification : classifications) {
        event.initialize(InputEvent::nextId(), /*deviceId=*/0, AINPUT_SOURCE_TOUCHSCREEN,
                         DISPLAY_ID, INVALID_HMAC, AMOTION_EVENT_ACTION_DOWN, 0, 0,
                         AMOTION_EVENT_EDGE_FLAG_NONE, AMETA_NONE, 0, classification,
                         identityTransform, 0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION,
                         AMOTION_EVENT_INVALID_CURSOR_POSITION, identityTransform, /*downTime=*/0,
                         /*eventTime=*/0, pointerCount, pointerProperties, pointerCoords);
        ASSERT_EQ(classification, event.getClassification());
    }
}

TEST_F(MotionEventTest, Initialize_SetsCursorPosition) {
    MotionEvent event;
    constexpr size_t pointerCount = 1;
    PointerProperties pointerProperties[pointerCount];
    PointerCoords pointerCoords[pointerCount];
    for (size_t i = 0; i < pointerCount; i++) {
        pointerProperties[i].clear();
        pointerProperties[i].id = i;
        pointerCoords[i].clear();
    }

    ui::Transform identityTransform;
    event.initialize(InputEvent::nextId(), /*deviceId=*/0, AINPUT_SOURCE_MOUSE, DISPLAY_ID,
                     INVALID_HMAC, AMOTION_EVENT_ACTION_DOWN, 0, 0, AMOTION_EVENT_EDGE_FLAG_NONE,
                     AMETA_NONE, 0, MotionClassification::NONE, identityTransform, 0, 0,
                     /*xCursorPosition=*/280, /*yCursorPosition=*/540, identityTransform,
                     /*downTime=*/0, /*eventTime=*/0, pointerCount, pointerProperties,
                     pointerCoords);
    event.offsetLocation(20, 60);
    ASSERT_EQ(280, event.getRawXCursorPosition());
    ASSERT_EQ(540, event.getRawYCursorPosition());
    ASSERT_EQ(300, event.getXCursorPosition());
    ASSERT_EQ(600, event.getYCursorPosition());
}

TEST_F(MotionEventTest, SetCursorPosition) {
    MotionEvent event;
    initializeEventWithHistory(&event);
    event.setSource(AINPUT_SOURCE_MOUSE);

    event.setCursorPosition(3, 4);
    ASSERT_EQ(3, event.getXCursorPosition());
    ASSERT_EQ(4, event.getYCursorPosition());
}

TEST_F(MotionEventTest, CoordinatesAreRoundedAppropriately) {
    // These are specifically integral values, since we are testing for rounding.
    const vec2 EXPECTED{400.f, 700.f};

    // Pick a transform such that transforming the point with its inverse and bringing that
    // back to the original coordinate space results in a non-zero error amount due to the
    // nature of floating point arithmetics. This can happen when the display is scaled.
    // For example, the 'adb shell wm size' command can be used to set an override for the
    // logical display size, which could result in the display being scaled.
    constexpr float scale = 720.f / 1080.f;
    ui::Transform transform;
    transform.set(scale, 0, 0, scale);
    ASSERT_NE(EXPECTED, transform.transform(transform.inverse().transform(EXPECTED)));

    // Store the inverse-transformed values in the motion event.
    const vec2 rawCoords = transform.inverse().transform(EXPECTED);
    PointerCoords pc{};
    pc.setAxisValue(AMOTION_EVENT_AXIS_X, rawCoords.x);
    pc.setAxisValue(AMOTION_EVENT_AXIS_Y, rawCoords.y);
    PointerProperties pp{};
    MotionEvent event;
    event.initialize(InputEvent::nextId(), 2, AINPUT_SOURCE_TOUCHSCREEN, DISPLAY_ID, HMAC,
                     AMOTION_EVENT_ACTION_MOVE, 0, AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED,
                     AMOTION_EVENT_EDGE_FLAG_TOP, AMETA_ALT_ON, AMOTION_EVENT_BUTTON_PRIMARY,
                     MotionClassification::NONE, transform, 2.0f, 2.1f, rawCoords.x, rawCoords.y,
                     transform, ARBITRARY_DOWN_TIME, ARBITRARY_EVENT_TIME, 1, &pp, &pc);

    // When using the getters from the MotionEvent to obtain the coordinates, the transformed
    // values should be rounded by an appropriate amount so that they now precisely equal the
    // original coordinates.
    ASSERT_EQ(EXPECTED.x, event.getX(0));
    ASSERT_EQ(EXPECTED.y, event.getY(0));
    ASSERT_EQ(EXPECTED.x, event.getRawX(0));
    ASSERT_EQ(EXPECTED.y, event.getRawY(0));
    ASSERT_EQ(EXPECTED.x, event.getXCursorPosition());
    ASSERT_EQ(EXPECTED.y, event.getYCursorPosition());
}

} // namespace android