summaryrefslogtreecommitdiff
path: root/services/inputflinger/reader/EventHub.cpp
blob: b19b4195d1d7c2ba43df48d0573d47abb07c073d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
/*
 * Copyright (C) 2005 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <assert.h>
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <memory.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/capability.h>
#include <sys/epoll.h>
#include <sys/inotify.h>
#include <sys/ioctl.h>
#include <sys/limits.h>
#include <sys/stat.h>
#include <sys/sysmacros.h>
#include <unistd.h>

#define LOG_TAG "EventHub"

// #define LOG_NDEBUG 0
#include <android-base/file.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <cutils/properties.h>
#include <input/KeyCharacterMap.h>
#include <input/KeyLayoutMap.h>
#include <input/VirtualKeyMap.h>
#include <openssl/sha.h>
#include <statslog.h>
#include <utils/Errors.h>
#include <utils/Log.h>
#include <utils/Timers.h>

#include <filesystem>
#include <regex>

#include "EventHub.h"

#define INDENT "  "
#define INDENT2 "    "
#define INDENT3 "      "

using android::base::StringPrintf;
using namespace android::flag_operators;

namespace android {

static const char* DEVICE_PATH = "/dev/input";
// v4l2 devices go directly into /dev
static const char* VIDEO_DEVICE_PATH = "/dev";

static constexpr size_t OBFUSCATED_LENGTH = 8;

static constexpr int32_t FF_STRONG_MAGNITUDE_CHANNEL_IDX = 0;
static constexpr int32_t FF_WEAK_MAGNITUDE_CHANNEL_IDX = 1;

// Mapping for input battery class node IDs lookup.
// https://www.kernel.org/doc/Documentation/power/power_supply_class.txt
static const std::unordered_map<std::string, InputBatteryClass> BATTERY_CLASSES =
        {{"capacity", InputBatteryClass::CAPACITY},
         {"capacity_level", InputBatteryClass::CAPACITY_LEVEL},
         {"status", InputBatteryClass::STATUS}};

// Mapping for input battery class node names lookup.
// https://www.kernel.org/doc/Documentation/power/power_supply_class.txt
static const std::unordered_map<InputBatteryClass, std::string> BATTERY_NODES =
        {{InputBatteryClass::CAPACITY, "capacity"},
         {InputBatteryClass::CAPACITY_LEVEL, "capacity_level"},
         {InputBatteryClass::STATUS, "status"}};

// must be kept in sync with definitions in kernel /drivers/power/supply/power_supply_sysfs.c
static const std::unordered_map<std::string, int32_t> BATTERY_STATUS =
        {{"Unknown", BATTERY_STATUS_UNKNOWN},
         {"Charging", BATTERY_STATUS_CHARGING},
         {"Discharging", BATTERY_STATUS_DISCHARGING},
         {"Not charging", BATTERY_STATUS_NOT_CHARGING},
         {"Full", BATTERY_STATUS_FULL}};

// Mapping taken from
// https://gitlab.freedesktop.org/upower/upower/-/blob/master/src/linux/up-device-supply.c#L484
static const std::unordered_map<std::string, int32_t> BATTERY_LEVEL = {{"Critical", 5},
                                                                       {"Low", 10},
                                                                       {"Normal", 55},
                                                                       {"High", 70},
                                                                       {"Full", 100},
                                                                       {"Unknown", 50}};

// Mapping for input led class node names lookup.
// https://www.kernel.org/doc/html/latest/leds/leds-class.html
static const std::unordered_map<std::string, InputLightClass> LIGHT_CLASSES =
        {{"red", InputLightClass::RED},
         {"green", InputLightClass::GREEN},
         {"blue", InputLightClass::BLUE},
         {"global", InputLightClass::GLOBAL},
         {"brightness", InputLightClass::BRIGHTNESS},
         {"multi_index", InputLightClass::MULTI_INDEX},
         {"multi_intensity", InputLightClass::MULTI_INTENSITY},
         {"max_brightness", InputLightClass::MAX_BRIGHTNESS}};

// Mapping for input multicolor led class node names.
// https://www.kernel.org/doc/html/latest/leds/leds-class-multicolor.html
static const std::unordered_map<InputLightClass, std::string> LIGHT_NODES =
        {{InputLightClass::BRIGHTNESS, "brightness"},
         {InputLightClass::MULTI_INDEX, "multi_index"},
         {InputLightClass::MULTI_INTENSITY, "multi_intensity"}};

// Mapping for light color name and the light color
const std::unordered_map<std::string, LightColor> LIGHT_COLORS = {{"red", LightColor::RED},
                                                                  {"green", LightColor::GREEN},
                                                                  {"blue", LightColor::BLUE}};

static inline const char* toString(bool value) {
    return value ? "true" : "false";
}

static std::string sha1(const std::string& in) {
    SHA_CTX ctx;
    SHA1_Init(&ctx);
    SHA1_Update(&ctx, reinterpret_cast<const u_char*>(in.c_str()), in.size());
    u_char digest[SHA_DIGEST_LENGTH];
    SHA1_Final(digest, &ctx);

    std::string out;
    for (size_t i = 0; i < SHA_DIGEST_LENGTH; i++) {
        out += StringPrintf("%02x", digest[i]);
    }
    return out;
}

/**
 * Return true if name matches "v4l-touch*"
 */
static bool isV4lTouchNode(std::string name) {
    return name.find("v4l-touch") != std::string::npos;
}

/**
 * Returns true if V4L devices should be scanned.
 *
 * The system property ro.input.video_enabled can be used to control whether
 * EventHub scans and opens V4L devices. As V4L does not support multiple
 * clients, EventHub effectively blocks access to these devices when it opens
 * them.
 *
 * Setting this to "false" would prevent any video devices from being discovered and
 * associated with input devices.
 *
 * This property can be used as follows:
 * 1. To turn off features that are dependent on video device presence.
 * 2. During testing and development, to allow other clients to read video devices
 * directly from /dev.
 */
static bool isV4lScanningEnabled() {
    return property_get_bool("ro.input.video_enabled", true /* default_value */);
}

static nsecs_t processEventTimestamp(const struct input_event& event) {
    // Use the time specified in the event instead of the current time
    // so that downstream code can get more accurate estimates of
    // event dispatch latency from the time the event is enqueued onto
    // the evdev client buffer.
    //
    // The event's timestamp fortuitously uses the same monotonic clock
    // time base as the rest of Android. The kernel event device driver
    // (drivers/input/evdev.c) obtains timestamps using ktime_get_ts().
    // The systemTime(SYSTEM_TIME_MONOTONIC) function we use everywhere
    // calls clock_gettime(CLOCK_MONOTONIC) which is implemented as a
    // system call that also queries ktime_get_ts().

    const nsecs_t inputEventTime = seconds_to_nanoseconds(event.time.tv_sec) +
            microseconds_to_nanoseconds(event.time.tv_usec);
    return inputEventTime;
}

/**
 * Returns the sysfs root path of the input device
 *
 */
static std::optional<std::filesystem::path> getSysfsRootPath(const char* devicePath) {
    std::error_code errorCode;

    // Stat the device path to get the major and minor number of the character file
    struct stat statbuf;
    if (stat(devicePath, &statbuf) == -1) {
        ALOGE("Could not stat device %s due to error: %s.", devicePath, std::strerror(errno));
        return std::nullopt;
    }

    unsigned int major_num = major(statbuf.st_rdev);
    unsigned int minor_num = minor(statbuf.st_rdev);

    // Realpath "/sys/dev/char/{major}:{minor}" to get the sysfs path to the input event
    auto sysfsPath = std::filesystem::path("/sys/dev/char/");
    sysfsPath /= std::to_string(major_num) + ":" + std::to_string(minor_num);
    sysfsPath = std::filesystem::canonical(sysfsPath, errorCode);

    // Make sure nothing went wrong in call to canonical()
    if (errorCode) {
        ALOGW("Could not run filesystem::canonical() due to error %d : %s.", errorCode.value(),
              errorCode.message().c_str());
        return std::nullopt;
    }

    // Continue to go up a directory until we reach a directory named "input"
    while (sysfsPath != "/" && sysfsPath.filename() != "input") {
        sysfsPath = sysfsPath.parent_path();
    }

    // Then go up one more and you will be at the sysfs root of the device
    sysfsPath = sysfsPath.parent_path();

    // Make sure we didn't reach root path and that directory actually exists
    if (sysfsPath == "/" || !std::filesystem::exists(sysfsPath, errorCode)) {
        if (errorCode) {
            ALOGW("Could not run filesystem::exists() due to error %d : %s.", errorCode.value(),
                  errorCode.message().c_str());
        }

        // Not found
        return std::nullopt;
    }

    return sysfsPath;
}

/**
 * Returns the list of files under a specified path.
 */
static std::vector<std::filesystem::path> allFilesInPath(const std::filesystem::path& path) {
    std::vector<std::filesystem::path> nodes;
    std::error_code errorCode;
    auto iter = std::filesystem::directory_iterator(path, errorCode);
    while (!errorCode && iter != std::filesystem::directory_iterator()) {
        nodes.push_back(iter->path());
        iter++;
    }
    return nodes;
}

/**
 * Returns the list of files under a specified directory in a sysfs path.
 * Example:
 * findSysfsNodes(sysfsRootPath, SysfsClass::LEDS) will return all led nodes under "leds" directory
 * in the sysfs path.
 */
static std::vector<std::filesystem::path> findSysfsNodes(const std::filesystem::path& sysfsRoot,
                                                         SysfsClass clazz) {
    std::string nodeStr = NamedEnum::string(clazz);
    std::for_each(nodeStr.begin(), nodeStr.end(),
                  [](char& c) { c = std::tolower(static_cast<unsigned char>(c)); });
    std::vector<std::filesystem::path> nodes;
    for (auto path = sysfsRoot; path != "/" && nodes.empty(); path = path.parent_path()) {
        nodes = allFilesInPath(path / nodeStr);
    }
    return nodes;
}

static std::optional<std::array<LightColor, COLOR_NUM>> getColorIndexArray(
        std::filesystem::path path) {
    std::string indexStr;
    if (!base::ReadFileToString(path, &indexStr)) {
        return std::nullopt;
    }

    // Parse the multi color LED index file, refer to kernel docs
    // leds/leds-class-multicolor.html
    std::regex indexPattern("(red|green|blue)\\s(red|green|blue)\\s(red|green|blue)[\\n]");
    std::smatch results;
    std::array<LightColor, COLOR_NUM> colors;
    if (!std::regex_match(indexStr, results, indexPattern)) {
        return std::nullopt;
    }

    for (size_t i = 1; i < results.size(); i++) {
        const auto it = LIGHT_COLORS.find(results[i].str());
        if (it != LIGHT_COLORS.end()) {
            // intensities.emplace(it->second, 0);
            colors[i - 1] = it->second;
        }
    }
    return colors;
}

// --- Global Functions ---

Flags<InputDeviceClass> getAbsAxisUsage(int32_t axis, Flags<InputDeviceClass> deviceClasses) {
    // Touch devices get dibs on touch-related axes.
    if (deviceClasses.test(InputDeviceClass::TOUCH)) {
        switch (axis) {
            case ABS_X:
            case ABS_Y:
            case ABS_PRESSURE:
            case ABS_TOOL_WIDTH:
            case ABS_DISTANCE:
            case ABS_TILT_X:
            case ABS_TILT_Y:
            case ABS_MT_SLOT:
            case ABS_MT_TOUCH_MAJOR:
            case ABS_MT_TOUCH_MINOR:
            case ABS_MT_WIDTH_MAJOR:
            case ABS_MT_WIDTH_MINOR:
            case ABS_MT_ORIENTATION:
            case ABS_MT_POSITION_X:
            case ABS_MT_POSITION_Y:
            case ABS_MT_TOOL_TYPE:
            case ABS_MT_BLOB_ID:
            case ABS_MT_TRACKING_ID:
            case ABS_MT_PRESSURE:
            case ABS_MT_DISTANCE:
                return InputDeviceClass::TOUCH;
        }
    }

    if (deviceClasses.test(InputDeviceClass::SENSOR)) {
        switch (axis) {
            case ABS_X:
            case ABS_Y:
            case ABS_Z:
            case ABS_RX:
            case ABS_RY:
            case ABS_RZ:
                return InputDeviceClass::SENSOR;
        }
    }

    // External stylus gets the pressure axis
    if (deviceClasses.test(InputDeviceClass::EXTERNAL_STYLUS)) {
        if (axis == ABS_PRESSURE) {
            return InputDeviceClass::EXTERNAL_STYLUS;
        }
    }

    // Joystick devices get the rest.
    return deviceClasses & InputDeviceClass::JOYSTICK;
}

// --- EventHub::Device ---

EventHub::Device::Device(int fd, int32_t id, const std::string& path,
                         const InputDeviceIdentifier& identifier)
      : fd(fd),
        id(id),
        path(path),
        identifier(identifier),
        classes(0),
        configuration(nullptr),
        virtualKeyMap(nullptr),
        ffEffectPlaying(false),
        ffEffectId(-1),
        associatedDevice(nullptr),
        controllerNumber(0),
        enabled(true),
        isVirtual(fd < 0) {}

EventHub::Device::~Device() {
    close();
}

void EventHub::Device::close() {
    if (fd >= 0) {
        ::close(fd);
        fd = -1;
    }
}

status_t EventHub::Device::enable() {
    fd = open(path.c_str(), O_RDWR | O_CLOEXEC | O_NONBLOCK);
    if (fd < 0) {
        ALOGE("could not open %s, %s\n", path.c_str(), strerror(errno));
        return -errno;
    }
    enabled = true;
    return OK;
}

status_t EventHub::Device::disable() {
    close();
    enabled = false;
    return OK;
}

bool EventHub::Device::hasValidFd() const {
    return !isVirtual && enabled;
}

const std::shared_ptr<KeyCharacterMap> EventHub::Device::getKeyCharacterMap() const {
    return keyMap.keyCharacterMap;
}

template <std::size_t N>
status_t EventHub::Device::readDeviceBitMask(unsigned long ioctlCode, BitArray<N>& bitArray) {
    if (!hasValidFd()) {
        return BAD_VALUE;
    }
    if ((_IOC_SIZE(ioctlCode) == 0)) {
        ioctlCode |= _IOC(0, 0, 0, bitArray.bytes());
    }

    typename BitArray<N>::Buffer buffer;
    status_t ret = ioctl(fd, ioctlCode, buffer.data());
    bitArray.loadFromBuffer(buffer);
    return ret;
}

void EventHub::Device::configureFd() {
    // Set fd parameters with ioctl, such as key repeat, suspend block, and clock type
    if (classes.test(InputDeviceClass::KEYBOARD)) {
        // Disable kernel key repeat since we handle it ourselves
        unsigned int repeatRate[] = {0, 0};
        if (ioctl(fd, EVIOCSREP, repeatRate)) {
            ALOGW("Unable to disable kernel key repeat for %s: %s", path.c_str(), strerror(errno));
        }
    }

    // Tell the kernel that we want to use the monotonic clock for reporting timestamps
    // associated with input events.  This is important because the input system
    // uses the timestamps extensively and assumes they were recorded using the monotonic
    // clock.
    int clockId = CLOCK_MONOTONIC;
    if (classes.test(InputDeviceClass::SENSOR)) {
        // Each new sensor event should use the same time base as
        // SystemClock.elapsedRealtimeNanos().
        clockId = CLOCK_BOOTTIME;
    }
    bool usingClockIoctl = !ioctl(fd, EVIOCSCLOCKID, &clockId);
    ALOGI("usingClockIoctl=%s", toString(usingClockIoctl));
}

bool EventHub::Device::hasKeycodeLocked(int keycode) const {
    if (!keyMap.haveKeyLayout()) {
        return false;
    }

    std::vector<int32_t> scanCodes;
    keyMap.keyLayoutMap->findScanCodesForKey(keycode, &scanCodes);
    const size_t N = scanCodes.size();
    for (size_t i = 0; i < N && i <= KEY_MAX; i++) {
        int32_t sc = scanCodes[i];
        if (sc >= 0 && sc <= KEY_MAX && keyBitmask.test(sc)) {
            return true;
        }
    }

    return false;
}

void EventHub::Device::loadConfigurationLocked() {
    configurationFile =
            getInputDeviceConfigurationFilePathByDeviceIdentifier(identifier,
                                                                  InputDeviceConfigurationFileType::
                                                                          CONFIGURATION);
    if (configurationFile.empty()) {
        ALOGD("No input device configuration file found for device '%s'.", identifier.name.c_str());
    } else {
        android::base::Result<std::unique_ptr<PropertyMap>> propertyMap =
                PropertyMap::load(configurationFile.c_str());
        if (!propertyMap.ok()) {
            ALOGE("Error loading input device configuration file for device '%s'.  "
                  "Using default configuration.",
                  identifier.name.c_str());
        } else {
            configuration = std::move(*propertyMap);
        }
    }
}

bool EventHub::Device::loadVirtualKeyMapLocked() {
    // The virtual key map is supplied by the kernel as a system board property file.
    std::string propPath = "/sys/board_properties/virtualkeys.";
    propPath += identifier.getCanonicalName();
    if (access(propPath.c_str(), R_OK)) {
        return false;
    }
    virtualKeyMap = VirtualKeyMap::load(propPath);
    return virtualKeyMap != nullptr;
}

status_t EventHub::Device::loadKeyMapLocked() {
    return keyMap.load(identifier, configuration.get());
}

bool EventHub::Device::isExternalDeviceLocked() {
    if (configuration) {
        bool value;
        if (configuration->tryGetProperty(String8("device.internal"), value)) {
            return !value;
        }
    }
    return identifier.bus == BUS_USB || identifier.bus == BUS_BLUETOOTH;
}

bool EventHub::Device::deviceHasMicLocked() {
    if (configuration) {
        bool value;
        if (configuration->tryGetProperty(String8("audio.mic"), value)) {
            return value;
        }
    }
    return false;
}

void EventHub::Device::setLedStateLocked(int32_t led, bool on) {
    int32_t sc;
    if (hasValidFd() && mapLed(led, &sc) != NAME_NOT_FOUND) {
        struct input_event ev;
        ev.time.tv_sec = 0;
        ev.time.tv_usec = 0;
        ev.type = EV_LED;
        ev.code = sc;
        ev.value = on ? 1 : 0;

        ssize_t nWrite;
        do {
            nWrite = write(fd, &ev, sizeof(struct input_event));
        } while (nWrite == -1 && errno == EINTR);
    }
}

void EventHub::Device::setLedForControllerLocked() {
    for (int i = 0; i < MAX_CONTROLLER_LEDS; i++) {
        setLedStateLocked(ALED_CONTROLLER_1 + i, controllerNumber == i + 1);
    }
}

status_t EventHub::Device::mapLed(int32_t led, int32_t* outScanCode) const {
    if (!keyMap.haveKeyLayout()) {
        return NAME_NOT_FOUND;
    }

    int32_t scanCode;
    if (keyMap.keyLayoutMap->findScanCodeForLed(led, &scanCode) != NAME_NOT_FOUND) {
        if (scanCode >= 0 && scanCode <= LED_MAX && ledBitmask.test(scanCode)) {
            *outScanCode = scanCode;
            return NO_ERROR;
        }
    }
    return NAME_NOT_FOUND;
}

// Check the sysfs path for any input device batteries, returns true if battery found.
bool EventHub::AssociatedDevice::configureBatteryLocked() {
    nextBatteryId = 0;
    // Check if device has any battery.
    const auto& paths = findSysfsNodes(sysfsRootPath, SysfsClass::POWER_SUPPLY);
    for (const auto& nodePath : paths) {
        RawBatteryInfo info;
        info.id = ++nextBatteryId;
        info.path = nodePath;
        info.name = nodePath.filename();

        // Scan the path for all the files
        // Refer to https://www.kernel.org/doc/Documentation/leds/leds-class.txt
        const auto& files = allFilesInPath(nodePath);
        for (const auto& file : files) {
            const auto it = BATTERY_CLASSES.find(file.filename().string());
            if (it != BATTERY_CLASSES.end()) {
                info.flags |= it->second;
            }
        }
        batteryInfos.insert_or_assign(info.id, info);
        ALOGD("configureBatteryLocked rawBatteryId %d name %s", info.id, info.name.c_str());
    }
    return !batteryInfos.empty();
}

// Check the sysfs path for any input device lights, returns true if lights found.
bool EventHub::AssociatedDevice::configureLightsLocked() {
    nextLightId = 0;
    // Check if device has any lights.
    const auto& paths = findSysfsNodes(sysfsRootPath, SysfsClass::LEDS);
    for (const auto& nodePath : paths) {
        RawLightInfo info;
        info.id = ++nextLightId;
        info.path = nodePath;
        info.name = nodePath.filename();
        info.maxBrightness = std::nullopt;
        size_t nameStart = info.name.rfind(":");
        if (nameStart != std::string::npos) {
            // Trim the name to color name
            info.name = info.name.substr(nameStart + 1);
            // Set InputLightClass flag for colors
            const auto it = LIGHT_CLASSES.find(info.name);
            if (it != LIGHT_CLASSES.end()) {
                info.flags |= it->second;
            }
        }
        // Scan the path for all the files
        // Refer to https://www.kernel.org/doc/Documentation/leds/leds-class.txt
        const auto& files = allFilesInPath(nodePath);
        for (const auto& file : files) {
            const auto it = LIGHT_CLASSES.find(file.filename().string());
            if (it != LIGHT_CLASSES.end()) {
                info.flags |= it->second;
                // If the node has maximum brightness, read it
                if (it->second == InputLightClass::MAX_BRIGHTNESS) {
                    std::string str;
                    if (base::ReadFileToString(file, &str)) {
                        info.maxBrightness = std::stoi(str);
                    }
                }
            }
        }
        lightInfos.insert_or_assign(info.id, info);
        ALOGD("configureLightsLocked rawLightId %d name %s", info.id, info.name.c_str());
    }
    return !lightInfos.empty();
}

/**
 * Get the capabilities for the current process.
 * Crashes the system if unable to create / check / destroy the capabilities object.
 */
class Capabilities final {
public:
    explicit Capabilities() {
        mCaps = cap_get_proc();
        LOG_ALWAYS_FATAL_IF(mCaps == nullptr, "Could not get capabilities of the current process");
    }

    /**
     * Check whether the current process has a specific capability
     * in the set of effective capabilities.
     * Return CAP_SET if the process has the requested capability
     * Return CAP_CLEAR otherwise.
     */
    cap_flag_value_t checkEffectiveCapability(cap_value_t capability) {
        cap_flag_value_t value;
        const int result = cap_get_flag(mCaps, capability, CAP_EFFECTIVE, &value);
        LOG_ALWAYS_FATAL_IF(result == -1, "Could not obtain the requested capability");
        return value;
    }

    ~Capabilities() {
        const int result = cap_free(mCaps);
        LOG_ALWAYS_FATAL_IF(result == -1, "Could not release the capabilities structure");
    }

private:
    cap_t mCaps;
};

static void ensureProcessCanBlockSuspend() {
    Capabilities capabilities;
    const bool canBlockSuspend =
            capabilities.checkEffectiveCapability(CAP_BLOCK_SUSPEND) == CAP_SET;
    LOG_ALWAYS_FATAL_IF(!canBlockSuspend,
                        "Input must be able to block suspend to properly process events");
}

// --- EventHub ---

const int EventHub::EPOLL_MAX_EVENTS;

EventHub::EventHub(void)
      : mBuiltInKeyboardId(NO_BUILT_IN_KEYBOARD),
        mNextDeviceId(1),
        mControllerNumbers(),
        mNeedToSendFinishedDeviceScan(false),
        mNeedToReopenDevices(false),
        mNeedToScanDevices(true),
        mPendingEventCount(0),
        mPendingEventIndex(0),
        mPendingINotify(false) {
    ensureProcessCanBlockSuspend();

    mEpollFd = epoll_create1(EPOLL_CLOEXEC);
    LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance: %s", strerror(errno));

    mINotifyFd = inotify_init();
    mInputWd = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE);
    LOG_ALWAYS_FATAL_IF(mInputWd < 0, "Could not register INotify for %s: %s", DEVICE_PATH,
                        strerror(errno));
    if (isV4lScanningEnabled()) {
        mVideoWd = inotify_add_watch(mINotifyFd, VIDEO_DEVICE_PATH, IN_DELETE | IN_CREATE);
        LOG_ALWAYS_FATAL_IF(mVideoWd < 0, "Could not register INotify for %s: %s",
                            VIDEO_DEVICE_PATH, strerror(errno));
    } else {
        mVideoWd = -1;
        ALOGI("Video device scanning disabled");
    }

    struct epoll_event eventItem = {};
    eventItem.events = EPOLLIN | EPOLLWAKEUP;
    eventItem.data.fd = mINotifyFd;
    int result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem);
    LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance.  errno=%d", errno);

    int wakeFds[2];
    result = pipe(wakeFds);
    LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe.  errno=%d", errno);

    mWakeReadPipeFd = wakeFds[0];
    mWakeWritePipeFd = wakeFds[1];

    result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK);
    LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking.  errno=%d",
                        errno);

    result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK);
    LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking.  errno=%d",
                        errno);

    eventItem.data.fd = mWakeReadPipeFd;
    result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem);
    LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance.  errno=%d",
                        errno);
}

EventHub::~EventHub(void) {
    closeAllDevicesLocked();

    ::close(mEpollFd);
    ::close(mINotifyFd);
    ::close(mWakeReadPipeFd);
    ::close(mWakeWritePipeFd);
}

InputDeviceIdentifier EventHub::getDeviceIdentifier(int32_t deviceId) const {
    std::scoped_lock _l(mLock);
    Device* device = getDeviceLocked(deviceId);
    return device != nullptr ? device->identifier : InputDeviceIdentifier();
}

Flags<InputDeviceClass> EventHub::getDeviceClasses(int32_t deviceId) const {
    std::scoped_lock _l(mLock);
    Device* device = getDeviceLocked(deviceId);
    return device != nullptr ? device->classes : Flags<InputDeviceClass>(0);
}

int32_t EventHub::getDeviceControllerNumber(int32_t deviceId) const {
    std::scoped_lock _l(mLock);
    Device* device = getDeviceLocked(deviceId);
    return device != nullptr ? device->controllerNumber : 0;
}

void EventHub::getConfiguration(int32_t deviceId, PropertyMap* outConfiguration) const {
    std::scoped_lock _l(mLock);
    Device* device = getDeviceLocked(deviceId);
    if (device != nullptr && device->configuration) {
        *outConfiguration = *device->configuration;
    } else {
        outConfiguration->clear();
    }
}

status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis,
                                       RawAbsoluteAxisInfo* outAxisInfo) const {
    outAxisInfo->clear();

    if (axis >= 0 && axis <= ABS_MAX) {
        std::scoped_lock _l(mLock);

        Device* device = getDeviceLocked(deviceId);
        if (device != nullptr && device->hasValidFd() && device->absBitmask.test(axis)) {
            struct input_absinfo info;
            if (ioctl(device->fd, EVIOCGABS(axis), &info)) {
                ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d", axis,
                      device->identifier.name.c_str(), device->fd, errno);
                return -errno;
            }

            if (info.minimum != info.maximum) {
                outAxisInfo->valid = true;
                outAxisInfo->minValue = info.minimum;
                outAxisInfo->maxValue = info.maximum;
                outAxisInfo->flat = info.flat;
                outAxisInfo->fuzz = info.fuzz;
                outAxisInfo->resolution = info.resolution;
            }
            return OK;
        }
    }
    return -1;
}

bool EventHub::hasRelativeAxis(int32_t deviceId, int axis) const {
    if (axis >= 0 && axis <= REL_MAX) {
        std::scoped_lock _l(mLock);
        Device* device = getDeviceLocked(deviceId);
        return device != nullptr ? device->relBitmask.test(axis) : false;
    }
    return false;
}

bool EventHub::hasInputProperty(int32_t deviceId, int property) const {
    std::scoped_lock _l(mLock);

    Device* device = getDeviceLocked(deviceId);
    return property >= 0 && property <= INPUT_PROP_MAX && device != nullptr
            ? device->propBitmask.test(property)
            : false;
}

bool EventHub::hasMscEvent(int32_t deviceId, int mscEvent) const {
    std::scoped_lock _l(mLock);

    Device* device = getDeviceLocked(deviceId);
    return mscEvent >= 0 && mscEvent <= MSC_MAX && device != nullptr
            ? device->mscBitmask.test(mscEvent)
            : false;
}

int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const {
    if (scanCode >= 0 && scanCode <= KEY_MAX) {
        std::scoped_lock _l(mLock);

        Device* device = getDeviceLocked(deviceId);
        if (device != nullptr && device->hasValidFd() && device->keyBitmask.test(scanCode)) {
            if (device->readDeviceBitMask(EVIOCGKEY(0), device->keyState) >= 0) {
                return device->keyState.test(scanCode) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
            }
        }
    }
    return AKEY_STATE_UNKNOWN;
}

int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const {
    std::scoped_lock _l(mLock);

    Device* device = getDeviceLocked(deviceId);
    if (device != nullptr && device->hasValidFd() && device->keyMap.haveKeyLayout()) {
        std::vector<int32_t> scanCodes;
        device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode, &scanCodes);
        if (scanCodes.size() != 0) {
            if (device->readDeviceBitMask(EVIOCGKEY(0), device->keyState) >= 0) {
                for (size_t i = 0; i < scanCodes.size(); i++) {
                    int32_t sc = scanCodes[i];
                    if (sc >= 0 && sc <= KEY_MAX && device->keyState.test(sc)) {
                        return AKEY_STATE_DOWN;
                    }
                }
                return AKEY_STATE_UP;
            }
        }
    }
    return AKEY_STATE_UNKNOWN;
}

int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const {
    if (sw >= 0 && sw <= SW_MAX) {
        std::scoped_lock _l(mLock);

        Device* device = getDeviceLocked(deviceId);
        if (device != nullptr && device->hasValidFd() && device->swBitmask.test(sw)) {
            if (device->readDeviceBitMask(EVIOCGSW(0), device->swState) >= 0) {
                return device->swState.test(sw) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
            }
        }
    }
    return AKEY_STATE_UNKNOWN;
}

status_t EventHub::getAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t* outValue) const {
    *outValue = 0;

    if (axis >= 0 && axis <= ABS_MAX) {
        std::scoped_lock _l(mLock);

        Device* device = getDeviceLocked(deviceId);
        if (device != nullptr && device->hasValidFd() && device->absBitmask.test(axis)) {
            struct input_absinfo info;
            if (ioctl(device->fd, EVIOCGABS(axis), &info)) {
                ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d", axis,
                      device->identifier.name.c_str(), device->fd, errno);
                return -errno;
            }

            *outValue = info.value;
            return OK;
        }
    }
    return -1;
}

bool EventHub::markSupportedKeyCodes(int32_t deviceId, size_t numCodes, const int32_t* keyCodes,
                                     uint8_t* outFlags) const {
    std::scoped_lock _l(mLock);

    Device* device = getDeviceLocked(deviceId);
    if (device != nullptr && device->keyMap.haveKeyLayout()) {
        std::vector<int32_t> scanCodes;
        for (size_t codeIndex = 0; codeIndex < numCodes; codeIndex++) {
            scanCodes.clear();

            status_t err = device->keyMap.keyLayoutMap->findScanCodesForKey(keyCodes[codeIndex],
                                                                            &scanCodes);
            if (!err) {
                // check the possible scan codes identified by the layout map against the
                // map of codes actually emitted by the driver
                for (size_t sc = 0; sc < scanCodes.size(); sc++) {
                    if (device->keyBitmask.test(scanCodes[sc])) {
                        outFlags[codeIndex] = 1;
                        break;
                    }
                }
            }
        }
        return true;
    }
    return false;
}

status_t EventHub::mapKey(int32_t deviceId, int32_t scanCode, int32_t usageCode, int32_t metaState,
                          int32_t* outKeycode, int32_t* outMetaState, uint32_t* outFlags) const {
    std::scoped_lock _l(mLock);
    Device* device = getDeviceLocked(deviceId);
    status_t status = NAME_NOT_FOUND;

    if (device != nullptr) {
        // Check the key character map first.
        const std::shared_ptr<KeyCharacterMap> kcm = device->getKeyCharacterMap();
        if (kcm) {
            if (!kcm->mapKey(scanCode, usageCode, outKeycode)) {
                *outFlags = 0;
                status = NO_ERROR;
            }
        }

        // Check the key layout next.
        if (status != NO_ERROR && device->keyMap.haveKeyLayout()) {
            if (!device->keyMap.keyLayoutMap->mapKey(scanCode, usageCode, outKeycode, outFlags)) {
                status = NO_ERROR;
            }
        }

        if (status == NO_ERROR) {
            if (kcm) {
                kcm->tryRemapKey(*outKeycode, metaState, outKeycode, outMetaState);
            } else {
                *outMetaState = metaState;
            }
        }
    }

    if (status != NO_ERROR) {
        *outKeycode = 0;
        *outFlags = 0;
        *outMetaState = metaState;
    }

    return status;
}

status_t EventHub::mapAxis(int32_t deviceId, int32_t scanCode, AxisInfo* outAxisInfo) const {
    std::scoped_lock _l(mLock);
    Device* device = getDeviceLocked(deviceId);

    if (device != nullptr && device->keyMap.haveKeyLayout()) {
        status_t err = device->keyMap.keyLayoutMap->mapAxis(scanCode, outAxisInfo);
        if (err == NO_ERROR) {
            return NO_ERROR;
        }
    }

    return NAME_NOT_FOUND;
}

base::Result<std::pair<InputDeviceSensorType, int32_t>> EventHub::mapSensor(int32_t deviceId,
                                                                            int32_t absCode) {
    std::scoped_lock _l(mLock);
    Device* device = getDeviceLocked(deviceId);

    if (device != nullptr && device->keyMap.haveKeyLayout()) {
        return device->keyMap.keyLayoutMap->mapSensor(absCode);
    }
    return Errorf("Device not found or device has no key layout.");
}

// Gets the battery info map from battery ID to RawBatteryInfo of the miscellaneous device
// associated with the device ID. Returns an empty map if no miscellaneous device found.
const std::unordered_map<int32_t, RawBatteryInfo>& EventHub::getBatteryInfoLocked(
        int32_t deviceId) const {
    static const std::unordered_map<int32_t, RawBatteryInfo> EMPTY_BATTERY_INFO = {};
    Device* device = getDeviceLocked(deviceId);
    if (device == nullptr || !device->associatedDevice) {
        return EMPTY_BATTERY_INFO;
    }
    return device->associatedDevice->batteryInfos;
}

const std::vector<int32_t> EventHub::getRawBatteryIds(int32_t deviceId) {
    std::scoped_lock _l(mLock);
    std::vector<int32_t> batteryIds;

    for (const auto [id, info] : getBatteryInfoLocked(deviceId)) {
        batteryIds.push_back(id);
    }

    return batteryIds;
}

std::optional<RawBatteryInfo> EventHub::getRawBatteryInfo(int32_t deviceId, int32_t batteryId) {
    std::scoped_lock _l(mLock);

    const auto infos = getBatteryInfoLocked(deviceId);

    auto it = infos.find(batteryId);
    if (it != infos.end()) {
        return it->second;
    }

    return std::nullopt;
}

// Gets the light info map from light ID to RawLightInfo of the miscellaneous device associated
// with the deivice ID. Returns an empty map if no miscellaneous device found.
const std::unordered_map<int32_t, RawLightInfo>& EventHub::getLightInfoLocked(
        int32_t deviceId) const {
    static const std::unordered_map<int32_t, RawLightInfo> EMPTY_LIGHT_INFO = {};
    Device* device = getDeviceLocked(deviceId);
    if (device == nullptr || !device->associatedDevice) {
        return EMPTY_LIGHT_INFO;
    }
    return device->associatedDevice->lightInfos;
}

const std::vector<int32_t> EventHub::getRawLightIds(int32_t deviceId) {
    std::scoped_lock _l(mLock);
    std::vector<int32_t> lightIds;

    for (const auto [id, info] : getLightInfoLocked(deviceId)) {
        lightIds.push_back(id);
    }

    return lightIds;
}

std::optional<RawLightInfo> EventHub::getRawLightInfo(int32_t deviceId, int32_t lightId) {
    std::scoped_lock _l(mLock);

    const auto infos = getLightInfoLocked(deviceId);

    auto it = infos.find(lightId);
    if (it != infos.end()) {
        return it->second;
    }

    return std::nullopt;
}

std::optional<int32_t> EventHub::getLightBrightness(int32_t deviceId, int32_t lightId) {
    std::scoped_lock _l(mLock);

    const auto infos = getLightInfoLocked(deviceId);
    auto it = infos.find(lightId);
    if (it == infos.end()) {
        return std::nullopt;
    }
    std::string buffer;
    if (!base::ReadFileToString(it->second.path / LIGHT_NODES.at(InputLightClass::BRIGHTNESS),
                                &buffer)) {
        return std::nullopt;
    }
    return std::stoi(buffer);
}

std::optional<std::unordered_map<LightColor, int32_t>> EventHub::getLightIntensities(
        int32_t deviceId, int32_t lightId) {
    std::scoped_lock _l(mLock);

    const auto infos = getLightInfoLocked(deviceId);
    auto lightIt = infos.find(lightId);
    if (lightIt == infos.end()) {
        return std::nullopt;
    }

    auto ret =
            getColorIndexArray(lightIt->second.path / LIGHT_NODES.at(InputLightClass::MULTI_INDEX));

    if (!ret.has_value()) {
        return std::nullopt;
    }
    std::array<LightColor, COLOR_NUM> colors = ret.value();

    std::string intensityStr;
    if (!base::ReadFileToString(lightIt->second.path /
                                        LIGHT_NODES.at(InputLightClass::MULTI_INTENSITY),
                                &intensityStr)) {
        return std::nullopt;
    }

    // Intensity node outputs 3 color values
    std::regex intensityPattern("([0-9]+)\\s([0-9]+)\\s([0-9]+)[\\n]");
    std::smatch results;

    if (!std::regex_match(intensityStr, results, intensityPattern)) {
        return std::nullopt;
    }
    std::unordered_map<LightColor, int32_t> intensities;
    for (size_t i = 1; i < results.size(); i++) {
        int value = std::stoi(results[i].str());
        intensities.emplace(colors[i - 1], value);
    }
    return intensities;
}

void EventHub::setLightBrightness(int32_t deviceId, int32_t lightId, int32_t brightness) {
    std::scoped_lock _l(mLock);

    const auto infos = getLightInfoLocked(deviceId);
    auto lightIt = infos.find(lightId);
    if (lightIt == infos.end()) {
        ALOGE("%s lightId %d not found ", __func__, lightId);
        return;
    }

    if (!base::WriteStringToFile(std::to_string(brightness),
                                 lightIt->second.path /
                                         LIGHT_NODES.at(InputLightClass::BRIGHTNESS))) {
        ALOGE("Can not write to file, error: %s", strerror(errno));
    }
}

void EventHub::setLightIntensities(int32_t deviceId, int32_t lightId,
                                   std::unordered_map<LightColor, int32_t> intensities) {
    std::scoped_lock _l(mLock);

    const auto infos = getLightInfoLocked(deviceId);
    auto lightIt = infos.find(lightId);
    if (lightIt == infos.end()) {
        ALOGE("Light Id %d does not exist.", lightId);
        return;
    }

    auto ret =
            getColorIndexArray(lightIt->second.path / LIGHT_NODES.at(InputLightClass::MULTI_INDEX));

    if (!ret.has_value()) {
        return;
    }
    std::array<LightColor, COLOR_NUM> colors = ret.value();

    std::string rgbStr;
    for (size_t i = 0; i < COLOR_NUM; i++) {
        auto it = intensities.find(colors[i]);
        if (it != intensities.end()) {
            rgbStr += std::to_string(it->second);
            // Insert space between colors
            if (i < COLOR_NUM - 1) {
                rgbStr += " ";
            }
        }
    }
    // Append new line
    rgbStr += "\n";

    if (!base::WriteStringToFile(rgbStr,
                                 lightIt->second.path /
                                         LIGHT_NODES.at(InputLightClass::MULTI_INTENSITY))) {
        ALOGE("Can not write to file, error: %s", strerror(errno));
    }
}

void EventHub::setExcludedDevices(const std::vector<std::string>& devices) {
    std::scoped_lock _l(mLock);

    mExcludedDevices = devices;
}

bool EventHub::hasScanCode(int32_t deviceId, int32_t scanCode) const {
    std::scoped_lock _l(mLock);
    Device* device = getDeviceLocked(deviceId);
    if (device != nullptr && scanCode >= 0 && scanCode <= KEY_MAX) {
        return device->keyBitmask.test(scanCode);
    }
    return false;
}

bool EventHub::hasLed(int32_t deviceId, int32_t led) const {
    std::scoped_lock _l(mLock);
    Device* device = getDeviceLocked(deviceId);
    int32_t sc;
    if (device != nullptr && device->mapLed(led, &sc) == NO_ERROR) {
        return device->ledBitmask.test(sc);
    }
    return false;
}

void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) {
    std::scoped_lock _l(mLock);
    Device* device = getDeviceLocked(deviceId);
    if (device != nullptr && device->hasValidFd()) {
        device->setLedStateLocked(led, on);
    }
}

void EventHub::getVirtualKeyDefinitions(int32_t deviceId,
                                        std::vector<VirtualKeyDefinition>& outVirtualKeys) const {
    outVirtualKeys.clear();

    std::scoped_lock _l(mLock);
    Device* device = getDeviceLocked(deviceId);
    if (device != nullptr && device->virtualKeyMap) {
        const std::vector<VirtualKeyDefinition> virtualKeys =
                device->virtualKeyMap->getVirtualKeys();
        outVirtualKeys.insert(outVirtualKeys.end(), virtualKeys.begin(), virtualKeys.end());
    }
}

const std::shared_ptr<KeyCharacterMap> EventHub::getKeyCharacterMap(int32_t deviceId) const {
    std::scoped_lock _l(mLock);
    Device* device = getDeviceLocked(deviceId);
    if (device != nullptr) {
        return device->getKeyCharacterMap();
    }
    return nullptr;
}

bool EventHub::setKeyboardLayoutOverlay(int32_t deviceId, std::shared_ptr<KeyCharacterMap> map) {
    std::scoped_lock _l(mLock);
    Device* device = getDeviceLocked(deviceId);
    if (device != nullptr && map != nullptr && device->keyMap.keyCharacterMap != nullptr) {
        device->keyMap.keyCharacterMap->combine(*map);
        device->keyMap.keyCharacterMapFile = device->keyMap.keyCharacterMap->getLoadFileName();
        return true;
    }
    return false;
}

static std::string generateDescriptor(InputDeviceIdentifier& identifier) {
    std::string rawDescriptor;
    rawDescriptor += StringPrintf(":%04x:%04x:", identifier.vendor, identifier.product);
    // TODO add handling for USB devices to not uniqueify kbs that show up twice
    if (!identifier.uniqueId.empty()) {
        rawDescriptor += "uniqueId:";
        rawDescriptor += identifier.uniqueId;
    } else if (identifier.nonce != 0) {
        rawDescriptor += StringPrintf("nonce:%04x", identifier.nonce);
    }

    if (identifier.vendor == 0 && identifier.product == 0) {
        // If we don't know the vendor and product id, then the device is probably
        // built-in so we need to rely on other information to uniquely identify
        // the input device.  Usually we try to avoid relying on the device name or
        // location but for built-in input device, they are unlikely to ever change.
        if (!identifier.name.empty()) {
            rawDescriptor += "name:";
            rawDescriptor += identifier.name;
        } else if (!identifier.location.empty()) {
            rawDescriptor += "location:";
            rawDescriptor += identifier.location;
        }
    }
    identifier.descriptor = sha1(rawDescriptor);
    return rawDescriptor;
}

void EventHub::assignDescriptorLocked(InputDeviceIdentifier& identifier) {
    // Compute a device descriptor that uniquely identifies the device.
    // The descriptor is assumed to be a stable identifier.  Its value should not
    // change between reboots, reconnections, firmware updates or new releases
    // of Android. In practice we sometimes get devices that cannot be uniquely
    // identified. In this case we enforce uniqueness between connected devices.
    // Ideally, we also want the descriptor to be short and relatively opaque.

    identifier.nonce = 0;
    std::string rawDescriptor = generateDescriptor(identifier);
    if (identifier.uniqueId.empty()) {
        // If it didn't have a unique id check for conflicts and enforce
        // uniqueness if necessary.
        while (getDeviceByDescriptorLocked(identifier.descriptor) != nullptr) {
            identifier.nonce++;
            rawDescriptor = generateDescriptor(identifier);
        }
    }
    ALOGV("Created descriptor: raw=%s, cooked=%s", rawDescriptor.c_str(),
          identifier.descriptor.c_str());
}

void EventHub::vibrate(int32_t deviceId, const VibrationElement& element) {
    std::scoped_lock _l(mLock);
    Device* device = getDeviceLocked(deviceId);
    if (device != nullptr && device->hasValidFd()) {
        ff_effect effect;
        memset(&effect, 0, sizeof(effect));
        effect.type = FF_RUMBLE;
        effect.id = device->ffEffectId;
        // evdev FF_RUMBLE effect only supports two channels of vibration.
        effect.u.rumble.strong_magnitude = element.getMagnitude(FF_STRONG_MAGNITUDE_CHANNEL_IDX);
        effect.u.rumble.weak_magnitude = element.getMagnitude(FF_WEAK_MAGNITUDE_CHANNEL_IDX);
        effect.replay.length = element.duration.count();
        effect.replay.delay = 0;
        if (ioctl(device->fd, EVIOCSFF, &effect)) {
            ALOGW("Could not upload force feedback effect to device %s due to error %d.",
                  device->identifier.name.c_str(), errno);
            return;
        }
        device->ffEffectId = effect.id;

        struct input_event ev;
        ev.time.tv_sec = 0;
        ev.time.tv_usec = 0;
        ev.type = EV_FF;
        ev.code = device->ffEffectId;
        ev.value = 1;
        if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
            ALOGW("Could not start force feedback effect on device %s due to error %d.",
                  device->identifier.name.c_str(), errno);
            return;
        }
        device->ffEffectPlaying = true;
    }
}

void EventHub::cancelVibrate(int32_t deviceId) {
    std::scoped_lock _l(mLock);
    Device* device = getDeviceLocked(deviceId);
    if (device != nullptr && device->hasValidFd()) {
        if (device->ffEffectPlaying) {
            device->ffEffectPlaying = false;

            struct input_event ev;
            ev.time.tv_sec = 0;
            ev.time.tv_usec = 0;
            ev.type = EV_FF;
            ev.code = device->ffEffectId;
            ev.value = 0;
            if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
                ALOGW("Could not stop force feedback effect on device %s due to error %d.",
                      device->identifier.name.c_str(), errno);
                return;
            }
        }
    }
}

std::vector<int32_t> EventHub::getVibratorIds(int32_t deviceId) {
    std::scoped_lock _l(mLock);
    std::vector<int32_t> vibrators;
    Device* device = getDeviceLocked(deviceId);
    if (device != nullptr && device->hasValidFd() &&
        device->classes.test(InputDeviceClass::VIBRATOR)) {
        vibrators.push_back(FF_STRONG_MAGNITUDE_CHANNEL_IDX);
        vibrators.push_back(FF_WEAK_MAGNITUDE_CHANNEL_IDX);
    }
    return vibrators;
}

EventHub::Device* EventHub::getDeviceByDescriptorLocked(const std::string& descriptor) const {
    for (const auto& [id, device] : mDevices) {
        if (descriptor == device->identifier.descriptor) {
            return device.get();
        }
    }
    return nullptr;
}

EventHub::Device* EventHub::getDeviceLocked(int32_t deviceId) const {
    if (deviceId == ReservedInputDeviceId::BUILT_IN_KEYBOARD_ID) {
        deviceId = mBuiltInKeyboardId;
    }
    const auto& it = mDevices.find(deviceId);
    return it != mDevices.end() ? it->second.get() : nullptr;
}

EventHub::Device* EventHub::getDeviceByPathLocked(const std::string& devicePath) const {
    for (const auto& [id, device] : mDevices) {
        if (device->path == devicePath) {
            return device.get();
        }
    }
    return nullptr;
}

/**
 * The file descriptor could be either input device, or a video device (associated with a
 * specific input device). Check both cases here, and return the device that this event
 * belongs to. Caller can compare the fd's once more to determine event type.
 * Looks through all input devices, and only attached video devices. Unattached video
 * devices are ignored.
 */
EventHub::Device* EventHub::getDeviceByFdLocked(int fd) const {
    for (const auto& [id, device] : mDevices) {
        if (device->fd == fd) {
            // This is an input device event
            return device.get();
        }
        if (device->videoDevice && device->videoDevice->getFd() == fd) {
            // This is a video device event
            return device.get();
        }
    }
    // We do not check mUnattachedVideoDevices here because they should not participate in epoll,
    // and therefore should never be looked up by fd.
    return nullptr;
}

std::optional<int32_t> EventHub::getBatteryCapacity(int32_t deviceId, int32_t batteryId) const {
    std::scoped_lock _l(mLock);

    const auto infos = getBatteryInfoLocked(deviceId);
    auto it = infos.find(batteryId);
    if (it == infos.end()) {
        return std::nullopt;
    }
    std::string buffer;

    // Some devices report battery capacity as an integer through the "capacity" file
    if (base::ReadFileToString(it->second.path / BATTERY_NODES.at(InputBatteryClass::CAPACITY),
                               &buffer)) {
        return std::stoi(base::Trim(buffer));
    }

    // Other devices report capacity as an enum value POWER_SUPPLY_CAPACITY_LEVEL_XXX
    // These values are taken from kernel source code include/linux/power_supply.h
    if (base::ReadFileToString(it->second.path /
                                       BATTERY_NODES.at(InputBatteryClass::CAPACITY_LEVEL),
                               &buffer)) {
        // Remove any white space such as trailing new line
        const auto levelIt = BATTERY_LEVEL.find(base::Trim(buffer));
        if (levelIt != BATTERY_LEVEL.end()) {
            return levelIt->second;
        }
    }

    return std::nullopt;
}

std::optional<int32_t> EventHub::getBatteryStatus(int32_t deviceId, int32_t batteryId) const {
    std::scoped_lock _l(mLock);
    const auto infos = getBatteryInfoLocked(deviceId);
    auto it = infos.find(batteryId);
    if (it == infos.end()) {
        return std::nullopt;
    }
    std::string buffer;

    if (!base::ReadFileToString(it->second.path / BATTERY_NODES.at(InputBatteryClass::STATUS),
                                &buffer)) {
        ALOGE("Failed to read sysfs battery info: %s", strerror(errno));
        return std::nullopt;
    }

    // Remove white space like trailing new line
    const auto statusIt = BATTERY_STATUS.find(base::Trim(buffer));
    if (statusIt != BATTERY_STATUS.end()) {
        return statusIt->second;
    }

    return std::nullopt;
}

size_t EventHub::getEvents(int timeoutMillis, RawEvent* buffer, size_t bufferSize) {
    ALOG_ASSERT(bufferSize >= 1);

    std::scoped_lock _l(mLock);

    struct input_event readBuffer[bufferSize];

    RawEvent* event = buffer;
    size_t capacity = bufferSize;
    bool awoken = false;
    for (;;) {
        nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);

        // Reopen input devices if needed.
        if (mNeedToReopenDevices) {
            mNeedToReopenDevices = false;

            ALOGI("Reopening all input devices due to a configuration change.");

            closeAllDevicesLocked();
            mNeedToScanDevices = true;
            break; // return to the caller before we actually rescan
        }

        // Report any devices that had last been added/removed.
        for (auto it = mClosingDevices.begin(); it != mClosingDevices.end();) {
            std::unique_ptr<Device> device = std::move(*it);
            ALOGV("Reporting device closed: id=%d, name=%s\n", device->id, device->path.c_str());
            event->when = now;
            event->deviceId = (device->id == mBuiltInKeyboardId)
                    ? ReservedInputDeviceId::BUILT_IN_KEYBOARD_ID
                    : device->id;
            event->type = DEVICE_REMOVED;
            event += 1;
            it = mClosingDevices.erase(it);
            mNeedToSendFinishedDeviceScan = true;
            if (--capacity == 0) {
                break;
            }
        }

        if (mNeedToScanDevices) {
            mNeedToScanDevices = false;
            scanDevicesLocked();
            mNeedToSendFinishedDeviceScan = true;
        }

        while (!mOpeningDevices.empty()) {
            std::unique_ptr<Device> device = std::move(*mOpeningDevices.rbegin());
            mOpeningDevices.pop_back();
            ALOGV("Reporting device opened: id=%d, name=%s\n", device->id, device->path.c_str());
            event->when = now;
            event->deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
            event->type = DEVICE_ADDED;
            event += 1;

            // Try to find a matching video device by comparing device names
            for (auto it = mUnattachedVideoDevices.begin(); it != mUnattachedVideoDevices.end();
                 it++) {
                std::unique_ptr<TouchVideoDevice>& videoDevice = *it;
                if (tryAddVideoDeviceLocked(*device, videoDevice)) {
                    // videoDevice was transferred to 'device'
                    it = mUnattachedVideoDevices.erase(it);
                    break;
                }
            }

            auto [dev_it, inserted] = mDevices.insert_or_assign(device->id, std::move(device));
            if (!inserted) {
                ALOGW("Device id %d exists, replaced.", device->id);
            }
            mNeedToSendFinishedDeviceScan = true;
            if (--capacity == 0) {
                break;
            }
        }

        if (mNeedToSendFinishedDeviceScan) {
            mNeedToSendFinishedDeviceScan = false;
            event->when = now;
            event->type = FINISHED_DEVICE_SCAN;
            event += 1;
            if (--capacity == 0) {
                break;
            }
        }

        // Grab the next input event.
        bool deviceChanged = false;
        while (mPendingEventIndex < mPendingEventCount) {
            const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++];
            if (eventItem.data.fd == mINotifyFd) {
                if (eventItem.events & EPOLLIN) {
                    mPendingINotify = true;
                } else {
                    ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events);
                }
                continue;
            }

            if (eventItem.data.fd == mWakeReadPipeFd) {
                if (eventItem.events & EPOLLIN) {
                    ALOGV("awoken after wake()");
                    awoken = true;
                    char wakeReadBuffer[16];
                    ssize_t nRead;
                    do {
                        nRead = read(mWakeReadPipeFd, wakeReadBuffer, sizeof(wakeReadBuffer));
                    } while ((nRead == -1 && errno == EINTR) || nRead == sizeof(wakeReadBuffer));
                } else {
                    ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.",
                          eventItem.events);
                }
                continue;
            }

            Device* device = getDeviceByFdLocked(eventItem.data.fd);
            if (device == nullptr) {
                ALOGE("Received unexpected epoll event 0x%08x for unknown fd %d.", eventItem.events,
                      eventItem.data.fd);
                ALOG_ASSERT(!DEBUG);
                continue;
            }
            if (device->videoDevice && eventItem.data.fd == device->videoDevice->getFd()) {
                if (eventItem.events & EPOLLIN) {
                    size_t numFrames = device->videoDevice->readAndQueueFrames();
                    if (numFrames == 0) {
                        ALOGE("Received epoll event for video device %s, but could not read frame",
                              device->videoDevice->getName().c_str());
                    }
                } else if (eventItem.events & EPOLLHUP) {
                    // TODO(b/121395353) - consider adding EPOLLRDHUP
                    ALOGI("Removing video device %s due to epoll hang-up event.",
                          device->videoDevice->getName().c_str());
                    unregisterVideoDeviceFromEpollLocked(*device->videoDevice);
                    device->videoDevice = nullptr;
                } else {
                    ALOGW("Received unexpected epoll event 0x%08x for device %s.", eventItem.events,
                          device->videoDevice->getName().c_str());
                    ALOG_ASSERT(!DEBUG);
                }
                continue;
            }
            // This must be an input event
            if (eventItem.events & EPOLLIN) {
                int32_t readSize =
                        read(device->fd, readBuffer, sizeof(struct input_event) * capacity);
                if (readSize == 0 || (readSize < 0 && errno == ENODEV)) {
                    // Device was removed before INotify noticed.
                    ALOGW("could not get event, removed? (fd: %d size: %" PRId32
                          " bufferSize: %zu capacity: %zu errno: %d)\n",
                          device->fd, readSize, bufferSize, capacity, errno);
                    deviceChanged = true;
                    closeDeviceLocked(*device);
                } else if (readSize < 0) {
                    if (errno != EAGAIN && errno != EINTR) {
                        ALOGW("could not get event (errno=%d)", errno);
                    }
                } else if ((readSize % sizeof(struct input_event)) != 0) {
                    ALOGE("could not get event (wrong size: %d)", readSize);
                } else {
                    int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;

                    size_t count = size_t(readSize) / sizeof(struct input_event);
                    for (size_t i = 0; i < count; i++) {
                        struct input_event& iev = readBuffer[i];
                        event->when = processEventTimestamp(iev);
                        event->readTime = systemTime(SYSTEM_TIME_MONOTONIC);
                        event->deviceId = deviceId;
                        event->type = iev.type;
                        event->code = iev.code;
                        event->value = iev.value;
                        event += 1;
                        capacity -= 1;
                    }
                    if (capacity == 0) {
                        // The result buffer is full.  Reset the pending event index
                        // so we will try to read the device again on the next iteration.
                        mPendingEventIndex -= 1;
                        break;
                    }
                }
            } else if (eventItem.events & EPOLLHUP) {
                ALOGI("Removing device %s due to epoll hang-up event.",
                      device->identifier.name.c_str());
                deviceChanged = true;
                closeDeviceLocked(*device);
            } else {
                ALOGW("Received unexpected epoll event 0x%08x for device %s.", eventItem.events,
                      device->identifier.name.c_str());
            }
        }

        // readNotify() will modify the list of devices so this must be done after
        // processing all other events to ensure that we read all remaining events
        // before closing the devices.
        if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) {
            mPendingINotify = false;
            readNotifyLocked();
            deviceChanged = true;
        }

        // Report added or removed devices immediately.
        if (deviceChanged) {
            continue;
        }

        // Return now if we have collected any events or if we were explicitly awoken.
        if (event != buffer || awoken) {
            break;
        }

        // Poll for events.
        // When a device driver has pending (unread) events, it acquires
        // a kernel wake lock.  Once the last pending event has been read, the device
        // driver will release the kernel wake lock, but the epoll will hold the wakelock,
        // since we are using EPOLLWAKEUP. The wakelock is released by the epoll when epoll_wait
        // is called again for the same fd that produced the event.
        // Thus the system can only sleep if there are no events pending or
        // currently being processed.
        //
        // The timeout is advisory only.  If the device is asleep, it will not wake just to
        // service the timeout.
        mPendingEventIndex = 0;

        mLock.unlock(); // release lock before poll

        int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis);

        mLock.lock(); // reacquire lock after poll

        if (pollResult == 0) {
            // Timed out.
            mPendingEventCount = 0;
            break;
        }

        if (pollResult < 0) {
            // An error occurred.
            mPendingEventCount = 0;

            // Sleep after errors to avoid locking up the system.
            // Hopefully the error is transient.
            if (errno != EINTR) {
                ALOGW("poll failed (errno=%d)\n", errno);
                usleep(100000);
            }
        } else {
            // Some events occurred.
            mPendingEventCount = size_t(pollResult);
        }
    }

    // All done, return the number of events we read.
    return event - buffer;
}

std::vector<TouchVideoFrame> EventHub::getVideoFrames(int32_t deviceId) {
    std::scoped_lock _l(mLock);

    Device* device = getDeviceLocked(deviceId);
    if (device == nullptr || !device->videoDevice) {
        return {};
    }
    return device->videoDevice->consumeFrames();
}

void EventHub::wake() {
    ALOGV("wake() called");

    ssize_t nWrite;
    do {
        nWrite = write(mWakeWritePipeFd, "W", 1);
    } while (nWrite == -1 && errno == EINTR);

    if (nWrite != 1 && errno != EAGAIN) {
        ALOGW("Could not write wake signal: %s", strerror(errno));
    }
}

void EventHub::scanDevicesLocked() {
    status_t result = scanDirLocked(DEVICE_PATH);
    if (result < 0) {
        ALOGE("scan dir failed for %s", DEVICE_PATH);
    }
    if (isV4lScanningEnabled()) {
        result = scanVideoDirLocked(VIDEO_DEVICE_PATH);
        if (result != OK) {
            ALOGE("scan video dir failed for %s", VIDEO_DEVICE_PATH);
        }
    }
    if (mDevices.find(ReservedInputDeviceId::VIRTUAL_KEYBOARD_ID) == mDevices.end()) {
        createVirtualKeyboardLocked();
    }
}

// ----------------------------------------------------------------------------

static const int32_t GAMEPAD_KEYCODES[] = {
        AKEYCODE_BUTTON_A,      AKEYCODE_BUTTON_B,      AKEYCODE_BUTTON_C,    //
        AKEYCODE_BUTTON_X,      AKEYCODE_BUTTON_Y,      AKEYCODE_BUTTON_Z,    //
        AKEYCODE_BUTTON_L1,     AKEYCODE_BUTTON_R1,                           //
        AKEYCODE_BUTTON_L2,     AKEYCODE_BUTTON_R2,                           //
        AKEYCODE_BUTTON_THUMBL, AKEYCODE_BUTTON_THUMBR,                       //
        AKEYCODE_BUTTON_START,  AKEYCODE_BUTTON_SELECT, AKEYCODE_BUTTON_MODE, //
};

status_t EventHub::registerFdForEpoll(int fd) {
    // TODO(b/121395353) - consider adding EPOLLRDHUP
    struct epoll_event eventItem = {};
    eventItem.events = EPOLLIN | EPOLLWAKEUP;
    eventItem.data.fd = fd;
    if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, &eventItem)) {
        ALOGE("Could not add fd to epoll instance: %s", strerror(errno));
        return -errno;
    }
    return OK;
}

status_t EventHub::unregisterFdFromEpoll(int fd) {
    if (epoll_ctl(mEpollFd, EPOLL_CTL_DEL, fd, nullptr)) {
        ALOGW("Could not remove fd from epoll instance: %s", strerror(errno));
        return -errno;
    }
    return OK;
}

status_t EventHub::registerDeviceForEpollLocked(Device& device) {
    status_t result = registerFdForEpoll(device.fd);
    if (result != OK) {
        ALOGE("Could not add input device fd to epoll for device %" PRId32, device.id);
        return result;
    }
    if (device.videoDevice) {
        registerVideoDeviceForEpollLocked(*device.videoDevice);
    }
    return result;
}

void EventHub::registerVideoDeviceForEpollLocked(const TouchVideoDevice& videoDevice) {
    status_t result = registerFdForEpoll(videoDevice.getFd());
    if (result != OK) {
        ALOGE("Could not add video device %s to epoll", videoDevice.getName().c_str());
    }
}

status_t EventHub::unregisterDeviceFromEpollLocked(Device& device) {
    if (device.hasValidFd()) {
        status_t result = unregisterFdFromEpoll(device.fd);
        if (result != OK) {
            ALOGW("Could not remove input device fd from epoll for device %" PRId32, device.id);
            return result;
        }
    }
    if (device.videoDevice) {
        unregisterVideoDeviceFromEpollLocked(*device.videoDevice);
    }
    return OK;
}

void EventHub::unregisterVideoDeviceFromEpollLocked(const TouchVideoDevice& videoDevice) {
    if (videoDevice.hasValidFd()) {
        status_t result = unregisterFdFromEpoll(videoDevice.getFd());
        if (result != OK) {
            ALOGW("Could not remove video device fd from epoll for device: %s",
                  videoDevice.getName().c_str());
        }
    }
}

void EventHub::reportDeviceAddedForStatisticsLocked(const InputDeviceIdentifier& identifier,
                                                    Flags<InputDeviceClass> classes) {
    SHA256_CTX ctx;
    SHA256_Init(&ctx);
    SHA256_Update(&ctx, reinterpret_cast<const uint8_t*>(identifier.uniqueId.c_str()),
                  identifier.uniqueId.size());
    std::array<uint8_t, SHA256_DIGEST_LENGTH> digest;
    SHA256_Final(digest.data(), &ctx);

    std::string obfuscatedId;
    for (size_t i = 0; i < OBFUSCATED_LENGTH; i++) {
        obfuscatedId += StringPrintf("%02x", digest[i]);
    }

    android::util::stats_write(android::util::INPUTDEVICE_REGISTERED, identifier.name.c_str(),
                               identifier.vendor, identifier.product, identifier.version,
                               identifier.bus, obfuscatedId.c_str(), classes.get());
}

void EventHub::openDeviceLocked(const std::string& devicePath) {
    // If an input device happens to register around the time when EventHub's constructor runs, it
    // is possible that the same input event node (for example, /dev/input/event3) will be noticed
    // in both 'inotify' callback and also in the 'scanDirLocked' pass. To prevent duplicate devices
    // from getting registered, ensure that this path is not already covered by an existing device.
    for (const auto& [deviceId, device] : mDevices) {
        if (device->path == devicePath) {
            return; // device was already registered
        }
    }

    char buffer[80];

    ALOGV("Opening device: %s", devicePath.c_str());

    int fd = open(devicePath.c_str(), O_RDWR | O_CLOEXEC | O_NONBLOCK);
    if (fd < 0) {
        ALOGE("could not open %s, %s\n", devicePath.c_str(), strerror(errno));
        return;
    }

    InputDeviceIdentifier identifier;

    // Get device name.
    if (ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) {
        ALOGE("Could not get device name for %s: %s", devicePath.c_str(), strerror(errno));
    } else {
        buffer[sizeof(buffer) - 1] = '\0';
        identifier.name = buffer;
    }

    // Check to see if the device is on our excluded list
    for (size_t i = 0; i < mExcludedDevices.size(); i++) {
        const std::string& item = mExcludedDevices[i];
        if (identifier.name == item) {
            ALOGI("ignoring event id %s driver %s\n", devicePath.c_str(), item.c_str());
            close(fd);
            return;
        }
    }

    // Get device driver version.
    int driverVersion;
    if (ioctl(fd, EVIOCGVERSION, &driverVersion)) {
        ALOGE("could not get driver version for %s, %s\n", devicePath.c_str(), strerror(errno));
        close(fd);
        return;
    }

    // Get device identifier.
    struct input_id inputId;
    if (ioctl(fd, EVIOCGID, &inputId)) {
        ALOGE("could not get device input id for %s, %s\n", devicePath.c_str(), strerror(errno));
        close(fd);
        return;
    }
    identifier.bus = inputId.bustype;
    identifier.product = inputId.product;
    identifier.vendor = inputId.vendor;
    identifier.version = inputId.version;

    // Get device physical location.
    if (ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) {
        // fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno));
    } else {
        buffer[sizeof(buffer) - 1] = '\0';
        identifier.location = buffer;
    }

    // Get device unique id.
    if (ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) {
        // fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno));
    } else {
        buffer[sizeof(buffer) - 1] = '\0';
        identifier.uniqueId = buffer;
    }

    // Fill in the descriptor.
    assignDescriptorLocked(identifier);

    // Allocate device.  (The device object takes ownership of the fd at this point.)
    int32_t deviceId = mNextDeviceId++;
    std::unique_ptr<Device> device = std::make_unique<Device>(fd, deviceId, devicePath, identifier);

    ALOGV("add device %d: %s\n", deviceId, devicePath.c_str());
    ALOGV("  bus:        %04x\n"
          "  vendor      %04x\n"
          "  product     %04x\n"
          "  version     %04x\n",
          identifier.bus, identifier.vendor, identifier.product, identifier.version);
    ALOGV("  name:       \"%s\"\n", identifier.name.c_str());
    ALOGV("  location:   \"%s\"\n", identifier.location.c_str());
    ALOGV("  unique id:  \"%s\"\n", identifier.uniqueId.c_str());
    ALOGV("  descriptor: \"%s\"\n", identifier.descriptor.c_str());
    ALOGV("  driver:     v%d.%d.%d\n", driverVersion >> 16, (driverVersion >> 8) & 0xff,
          driverVersion & 0xff);

    // Load the configuration file for the device.
    device->loadConfigurationLocked();

    bool hasBattery = false;
    bool hasLights = false;
    // Check the sysfs root path
    std::optional<std::filesystem::path> sysfsRootPath = getSysfsRootPath(devicePath.c_str());
    if (sysfsRootPath.has_value()) {
        std::shared_ptr<AssociatedDevice> associatedDevice;
        for (const auto& [id, dev] : mDevices) {
            if (device->identifier.descriptor == dev->identifier.descriptor &&
                !dev->associatedDevice) {
                associatedDevice = dev->associatedDevice;
            }
        }
        if (!associatedDevice) {
            associatedDevice = std::make_shared<AssociatedDevice>(sysfsRootPath.value());
        }
        hasBattery = associatedDevice->configureBatteryLocked();
        hasLights = associatedDevice->configureLightsLocked();

        device->associatedDevice = associatedDevice;
    }

    // Figure out the kinds of events the device reports.
    device->readDeviceBitMask(EVIOCGBIT(EV_KEY, 0), device->keyBitmask);
    device->readDeviceBitMask(EVIOCGBIT(EV_ABS, 0), device->absBitmask);
    device->readDeviceBitMask(EVIOCGBIT(EV_REL, 0), device->relBitmask);
    device->readDeviceBitMask(EVIOCGBIT(EV_SW, 0), device->swBitmask);
    device->readDeviceBitMask(EVIOCGBIT(EV_LED, 0), device->ledBitmask);
    device->readDeviceBitMask(EVIOCGBIT(EV_FF, 0), device->ffBitmask);
    device->readDeviceBitMask(EVIOCGBIT(EV_MSC, 0), device->mscBitmask);
    device->readDeviceBitMask(EVIOCGPROP(0), device->propBitmask);

    // See if this is a keyboard.  Ignore everything in the button range except for
    // joystick and gamepad buttons which are handled like keyboards for the most part.
    bool haveKeyboardKeys =
            device->keyBitmask.any(0, BTN_MISC) || device->keyBitmask.any(BTN_WHEEL, KEY_MAX + 1);
    bool haveGamepadButtons = device->keyBitmask.any(BTN_MISC, BTN_MOUSE) ||
            device->keyBitmask.any(BTN_JOYSTICK, BTN_DIGI);
    if (haveKeyboardKeys || haveGamepadButtons) {
        device->classes |= InputDeviceClass::KEYBOARD;
    }

    // See if this is a cursor device such as a trackball or mouse.
    if (device->keyBitmask.test(BTN_MOUSE) && device->relBitmask.test(REL_X) &&
        device->relBitmask.test(REL_Y)) {
        device->classes |= InputDeviceClass::CURSOR;
    }

    // See if this is a rotary encoder type device.
    String8 deviceType = String8();
    if (device->configuration &&
        device->configuration->tryGetProperty(String8("device.type"), deviceType)) {
        if (!deviceType.compare(String8("rotaryEncoder"))) {
            device->classes |= InputDeviceClass::ROTARY_ENCODER;
        }
    }

    // See if this is a touch pad.
    // Is this a new modern multi-touch driver?
    if (device->absBitmask.test(ABS_MT_POSITION_X) && device->absBitmask.test(ABS_MT_POSITION_Y)) {
        // Some joysticks such as the PS3 controller report axes that conflict
        // with the ABS_MT range.  Try to confirm that the device really is
        // a touch screen.
        if (device->keyBitmask.test(BTN_TOUCH) || !haveGamepadButtons) {
            device->classes |= (InputDeviceClass::TOUCH | InputDeviceClass::TOUCH_MT);
        }
        // Is this an old style single-touch driver?
    } else if (device->keyBitmask.test(BTN_TOUCH) && device->absBitmask.test(ABS_X) &&
               device->absBitmask.test(ABS_Y)) {
        device->classes |= InputDeviceClass::TOUCH;
        // Is this a BT stylus?
    } else if ((device->absBitmask.test(ABS_PRESSURE) || device->keyBitmask.test(BTN_TOUCH)) &&
               !device->absBitmask.test(ABS_X) && !device->absBitmask.test(ABS_Y)) {
        device->classes |= InputDeviceClass::EXTERNAL_STYLUS;
        // Keyboard will try to claim some of the buttons but we really want to reserve those so we
        // can fuse it with the touch screen data, so just take them back. Note this means an
        // external stylus cannot also be a keyboard device.
        device->classes &= ~InputDeviceClass::KEYBOARD;
    }

    // See if this device is a joystick.
    // Assumes that joysticks always have gamepad buttons in order to distinguish them
    // from other devices such as accelerometers that also have absolute axes.
    if (haveGamepadButtons) {
        auto assumedClasses = device->classes | InputDeviceClass::JOYSTICK;
        for (int i = 0; i <= ABS_MAX; i++) {
            if (device->absBitmask.test(i) &&
                (getAbsAxisUsage(i, assumedClasses).test(InputDeviceClass::JOYSTICK))) {
                device->classes = assumedClasses;
                break;
            }
        }
    }

    // Check whether this device is an accelerometer.
    if (device->propBitmask.test(INPUT_PROP_ACCELEROMETER)) {
        device->classes |= InputDeviceClass::SENSOR;
    }

    // Check whether this device has switches.
    for (int i = 0; i <= SW_MAX; i++) {
        if (device->swBitmask.test(i)) {
            device->classes |= InputDeviceClass::SWITCH;
            break;
        }
    }

    // Check whether this device supports the vibrator.
    if (device->ffBitmask.test(FF_RUMBLE)) {
        device->classes |= InputDeviceClass::VIBRATOR;
    }

    // Configure virtual keys.
    if ((device->classes.test(InputDeviceClass::TOUCH))) {
        // Load the virtual keys for the touch screen, if any.
        // We do this now so that we can make sure to load the keymap if necessary.
        bool success = device->loadVirtualKeyMapLocked();
        if (success) {
            device->classes |= InputDeviceClass::KEYBOARD;
        }
    }

    // Load the key map.
    // We need to do this for joysticks too because the key layout may specify axes, and for
    // sensor as well because the key layout may specify the axes to sensor data mapping.
    status_t keyMapStatus = NAME_NOT_FOUND;
    if (device->classes.any(InputDeviceClass::KEYBOARD | InputDeviceClass::JOYSTICK |
                            InputDeviceClass::SENSOR)) {
        // Load the keymap for the device.
        keyMapStatus = device->loadKeyMapLocked();
    }

    // Configure the keyboard, gamepad or virtual keyboard.
    if (device->classes.test(InputDeviceClass::KEYBOARD)) {
        // Register the keyboard as a built-in keyboard if it is eligible.
        if (!keyMapStatus && mBuiltInKeyboardId == NO_BUILT_IN_KEYBOARD &&
            isEligibleBuiltInKeyboard(device->identifier, device->configuration.get(),
                                      &device->keyMap)) {
            mBuiltInKeyboardId = device->id;
        }

        // 'Q' key support = cheap test of whether this is an alpha-capable kbd
        if (device->hasKeycodeLocked(AKEYCODE_Q)) {
            device->classes |= InputDeviceClass::ALPHAKEY;
        }

        // See if this device has a DPAD.
        if (device->hasKeycodeLocked(AKEYCODE_DPAD_UP) &&
            device->hasKeycodeLocked(AKEYCODE_DPAD_DOWN) &&
            device->hasKeycodeLocked(AKEYCODE_DPAD_LEFT) &&
            device->hasKeycodeLocked(AKEYCODE_DPAD_RIGHT) &&
            device->hasKeycodeLocked(AKEYCODE_DPAD_CENTER)) {
            device->classes |= InputDeviceClass::DPAD;
        }

        // See if this device has a gamepad.
        for (size_t i = 0; i < sizeof(GAMEPAD_KEYCODES) / sizeof(GAMEPAD_KEYCODES[0]); i++) {
            if (device->hasKeycodeLocked(GAMEPAD_KEYCODES[i])) {
                device->classes |= InputDeviceClass::GAMEPAD;
                break;
            }
        }
    }

    // If the device isn't recognized as something we handle, don't monitor it.
    if (device->classes == Flags<InputDeviceClass>(0)) {
        ALOGV("Dropping device: id=%d, path='%s', name='%s'", deviceId, devicePath.c_str(),
              device->identifier.name.c_str());
        return;
    }

    // Classify InputDeviceClass::BATTERY.
    if (hasBattery) {
        device->classes |= InputDeviceClass::BATTERY;
    }

    // Classify InputDeviceClass::LIGHT.
    if (hasLights) {
        device->classes |= InputDeviceClass::LIGHT;
    }

    // Determine whether the device has a mic.
    if (device->deviceHasMicLocked()) {
        device->classes |= InputDeviceClass::MIC;
    }

    // Determine whether the device is external or internal.
    if (device->isExternalDeviceLocked()) {
        device->classes |= InputDeviceClass::EXTERNAL;
    }

    if (device->classes.any(InputDeviceClass::JOYSTICK | InputDeviceClass::DPAD) &&
        device->classes.test(InputDeviceClass::GAMEPAD)) {
        device->controllerNumber = getNextControllerNumberLocked(device->identifier.name);
        device->setLedForControllerLocked();
    }

    if (registerDeviceForEpollLocked(*device) != OK) {
        return;
    }

    device->configureFd();

    ALOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=%s, "
          "configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s, ",
          deviceId, fd, devicePath.c_str(), device->identifier.name.c_str(),
          device->classes.string().c_str(), device->configurationFile.c_str(),
          device->keyMap.keyLayoutFile.c_str(), device->keyMap.keyCharacterMapFile.c_str(),
          toString(mBuiltInKeyboardId == deviceId));

    addDeviceLocked(std::move(device));
}

void EventHub::openVideoDeviceLocked(const std::string& devicePath) {
    std::unique_ptr<TouchVideoDevice> videoDevice = TouchVideoDevice::create(devicePath);
    if (!videoDevice) {
        ALOGE("Could not create touch video device for %s. Ignoring", devicePath.c_str());
        return;
    }
    // Transfer ownership of this video device to a matching input device
    for (const auto& [id, device] : mDevices) {
        if (tryAddVideoDeviceLocked(*device, videoDevice)) {
            return; // 'device' now owns 'videoDevice'
        }
    }

    // Couldn't find a matching input device, so just add it to a temporary holding queue.
    // A matching input device may appear later.
    ALOGI("Adding video device %s to list of unattached video devices",
          videoDevice->getName().c_str());
    mUnattachedVideoDevices.push_back(std::move(videoDevice));
}

bool EventHub::tryAddVideoDeviceLocked(EventHub::Device& device,
                                       std::unique_ptr<TouchVideoDevice>& videoDevice) {
    if (videoDevice->getName() != device.identifier.name) {
        return false;
    }
    device.videoDevice = std::move(videoDevice);
    if (device.enabled) {
        registerVideoDeviceForEpollLocked(*device.videoDevice);
    }
    return true;
}

bool EventHub::isDeviceEnabled(int32_t deviceId) {
    std::scoped_lock _l(mLock);
    Device* device = getDeviceLocked(deviceId);
    if (device == nullptr) {
        ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
        return false;
    }
    return device->enabled;
}

status_t EventHub::enableDevice(int32_t deviceId) {
    std::scoped_lock _l(mLock);
    Device* device = getDeviceLocked(deviceId);
    if (device == nullptr) {
        ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
        return BAD_VALUE;
    }
    if (device->enabled) {
        ALOGW("Duplicate call to %s, input device %" PRId32 " already enabled", __func__, deviceId);
        return OK;
    }
    status_t result = device->enable();
    if (result != OK) {
        ALOGE("Failed to enable device %" PRId32, deviceId);
        return result;
    }

    device->configureFd();

    return registerDeviceForEpollLocked(*device);
}

status_t EventHub::disableDevice(int32_t deviceId) {
    std::scoped_lock _l(mLock);
    Device* device = getDeviceLocked(deviceId);
    if (device == nullptr) {
        ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
        return BAD_VALUE;
    }
    if (!device->enabled) {
        ALOGW("Duplicate call to %s, input device already disabled", __func__);
        return OK;
    }
    unregisterDeviceFromEpollLocked(*device);
    return device->disable();
}

void EventHub::createVirtualKeyboardLocked() {
    InputDeviceIdentifier identifier;
    identifier.name = "Virtual";
    identifier.uniqueId = "<virtual>";
    assignDescriptorLocked(identifier);

    std::unique_ptr<Device> device =
            std::make_unique<Device>(-1, ReservedInputDeviceId::VIRTUAL_KEYBOARD_ID, "<virtual>",
                                     identifier);
    device->classes = InputDeviceClass::KEYBOARD | InputDeviceClass::ALPHAKEY |
            InputDeviceClass::DPAD | InputDeviceClass::VIRTUAL;
    device->loadKeyMapLocked();
    addDeviceLocked(std::move(device));
}

void EventHub::addDeviceLocked(std::unique_ptr<Device> device) {
    reportDeviceAddedForStatisticsLocked(device->identifier, device->classes);
    mOpeningDevices.push_back(std::move(device));
}

int32_t EventHub::getNextControllerNumberLocked(const std::string& name) {
    if (mControllerNumbers.isFull()) {
        ALOGI("Maximum number of controllers reached, assigning controller number 0 to device %s",
              name.c_str());
        return 0;
    }
    // Since the controller number 0 is reserved for non-controllers, translate all numbers up by
    // one
    return static_cast<int32_t>(mControllerNumbers.markFirstUnmarkedBit() + 1);
}

void EventHub::releaseControllerNumberLocked(int32_t num) {
    if (num > 0) {
        mControllerNumbers.clearBit(static_cast<uint32_t>(num - 1));
    }
}

void EventHub::closeDeviceByPathLocked(const std::string& devicePath) {
    Device* device = getDeviceByPathLocked(devicePath);
    if (device != nullptr) {
        closeDeviceLocked(*device);
        return;
    }
    ALOGV("Remove device: %s not found, device may already have been removed.", devicePath.c_str());
}

/**
 * Find the video device by filename, and close it.
 * The video device is closed by path during an inotify event, where we don't have the
 * additional context about the video device fd, or the associated input device.
 */
void EventHub::closeVideoDeviceByPathLocked(const std::string& devicePath) {
    // A video device may be owned by an existing input device, or it may be stored in
    // the mUnattachedVideoDevices queue. Check both locations.
    for (const auto& [id, device] : mDevices) {
        if (device->videoDevice && device->videoDevice->getPath() == devicePath) {
            unregisterVideoDeviceFromEpollLocked(*device->videoDevice);
            device->videoDevice = nullptr;
            return;
        }
    }
    mUnattachedVideoDevices
            .erase(std::remove_if(mUnattachedVideoDevices.begin(), mUnattachedVideoDevices.end(),
                                  [&devicePath](
                                          const std::unique_ptr<TouchVideoDevice>& videoDevice) {
                                      return videoDevice->getPath() == devicePath;
                                  }),
                   mUnattachedVideoDevices.end());
}

void EventHub::closeAllDevicesLocked() {
    mUnattachedVideoDevices.clear();
    while (!mDevices.empty()) {
        closeDeviceLocked(*(mDevices.begin()->second));
    }
}

void EventHub::closeDeviceLocked(Device& device) {
    ALOGI("Removed device: path=%s name=%s id=%d fd=%d classes=%s", device.path.c_str(),
          device.identifier.name.c_str(), device.id, device.fd, device.classes.string().c_str());

    if (device.id == mBuiltInKeyboardId) {
        ALOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this",
              device.path.c_str(), mBuiltInKeyboardId);
        mBuiltInKeyboardId = NO_BUILT_IN_KEYBOARD;
    }

    unregisterDeviceFromEpollLocked(device);
    if (device.videoDevice) {
        // This must be done after the video device is removed from epoll
        mUnattachedVideoDevices.push_back(std::move(device.videoDevice));
    }

    releaseControllerNumberLocked(device.controllerNumber);
    device.controllerNumber = 0;
    device.close();
    mClosingDevices.push_back(std::move(mDevices[device.id]));

    mDevices.erase(device.id);
}

status_t EventHub::readNotifyLocked() {
    int res;
    char event_buf[512];
    int event_size;
    int event_pos = 0;
    struct inotify_event* event;

    ALOGV("EventHub::readNotify nfd: %d\n", mINotifyFd);
    res = read(mINotifyFd, event_buf, sizeof(event_buf));
    if (res < (int)sizeof(*event)) {
        if (errno == EINTR) return 0;
        ALOGW("could not get event, %s\n", strerror(errno));
        return -1;
    }

    while (res >= (int)sizeof(*event)) {
        event = (struct inotify_event*)(event_buf + event_pos);
        if (event->len) {
            if (event->wd == mInputWd) {
                std::string filename = std::string(DEVICE_PATH) + "/" + event->name;
                if (event->mask & IN_CREATE) {
                    openDeviceLocked(filename);
                } else {
                    ALOGI("Removing device '%s' due to inotify event\n", filename.c_str());
                    closeDeviceByPathLocked(filename);
                }
            } else if (event->wd == mVideoWd) {
                if (isV4lTouchNode(event->name)) {
                    std::string filename = std::string(VIDEO_DEVICE_PATH) + "/" + event->name;
                    if (event->mask & IN_CREATE) {
                        openVideoDeviceLocked(filename);
                    } else {
                        ALOGI("Removing video device '%s' due to inotify event", filename.c_str());
                        closeVideoDeviceByPathLocked(filename);
                    }
                }
            } else {
                LOG_ALWAYS_FATAL("Unexpected inotify event, wd = %i", event->wd);
            }
        }
        event_size = sizeof(*event) + event->len;
        res -= event_size;
        event_pos += event_size;
    }
    return 0;
}

status_t EventHub::scanDirLocked(const std::string& dirname) {
    for (const auto& entry : std::filesystem::directory_iterator(dirname)) {
        openDeviceLocked(entry.path());
    }
    return 0;
}

/**
 * Look for all dirname/v4l-touch* devices, and open them.
 */
status_t EventHub::scanVideoDirLocked(const std::string& dirname) {
    for (const auto& entry : std::filesystem::directory_iterator(dirname)) {
        if (isV4lTouchNode(entry.path())) {
            ALOGI("Found touch video device %s", entry.path().c_str());
            openVideoDeviceLocked(entry.path());
        }
    }
    return OK;
}

void EventHub::requestReopenDevices() {
    ALOGV("requestReopenDevices() called");

    std::scoped_lock _l(mLock);
    mNeedToReopenDevices = true;
}

void EventHub::dump(std::string& dump) {
    dump += "Event Hub State:\n";

    { // acquire lock
        std::scoped_lock _l(mLock);

        dump += StringPrintf(INDENT "BuiltInKeyboardId: %d\n", mBuiltInKeyboardId);

        dump += INDENT "Devices:\n";

        for (const auto& [id, device] : mDevices) {
            if (mBuiltInKeyboardId == device->id) {
                dump += StringPrintf(INDENT2 "%d: %s (aka device 0 - built-in keyboard)\n",
                                     device->id, device->identifier.name.c_str());
            } else {
                dump += StringPrintf(INDENT2 "%d: %s\n", device->id,
                                     device->identifier.name.c_str());
            }
            dump += StringPrintf(INDENT3 "Classes: %s\n", device->classes.string().c_str());
            dump += StringPrintf(INDENT3 "Path: %s\n", device->path.c_str());
            dump += StringPrintf(INDENT3 "Enabled: %s\n", toString(device->enabled));
            dump += StringPrintf(INDENT3 "Descriptor: %s\n", device->identifier.descriptor.c_str());
            dump += StringPrintf(INDENT3 "Location: %s\n", device->identifier.location.c_str());
            dump += StringPrintf(INDENT3 "ControllerNumber: %d\n", device->controllerNumber);
            dump += StringPrintf(INDENT3 "UniqueId: %s\n", device->identifier.uniqueId.c_str());
            dump += StringPrintf(INDENT3 "Identifier: bus=0x%04x, vendor=0x%04x, "
                                         "product=0x%04x, version=0x%04x\n",
                                 device->identifier.bus, device->identifier.vendor,
                                 device->identifier.product, device->identifier.version);
            dump += StringPrintf(INDENT3 "KeyLayoutFile: %s\n",
                                 device->keyMap.keyLayoutFile.c_str());
            dump += StringPrintf(INDENT3 "KeyCharacterMapFile: %s\n",
                                 device->keyMap.keyCharacterMapFile.c_str());
            dump += StringPrintf(INDENT3 "ConfigurationFile: %s\n",
                                 device->configurationFile.c_str());
            dump += INDENT3 "VideoDevice: ";
            if (device->videoDevice) {
                dump += device->videoDevice->dump() + "\n";
            } else {
                dump += "<none>\n";
            }
        }

        dump += INDENT "Unattached video devices:\n";
        for (const std::unique_ptr<TouchVideoDevice>& videoDevice : mUnattachedVideoDevices) {
            dump += INDENT2 + videoDevice->dump() + "\n";
        }
        if (mUnattachedVideoDevices.empty()) {
            dump += INDENT2 "<none>\n";
        }
    } // release lock
}

void EventHub::monitor() {
    // Acquire and release the lock to ensure that the event hub has not deadlocked.
    std::unique_lock<std::mutex> lock(mLock);
}

}; // namespace android