summaryrefslogtreecommitdiff
path: root/services/inputflinger/reader/mapper/SensorInputMapper.cpp
blob: 7ac2dec895ca5ae4b380e965eb7882b7c7c796f6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
/*
 * Copyright (C) 2020 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <locale>

#include "../Macros.h"

#include "SensorInputMapper.h"

// Log detailed debug messages about each sensor event notification to the dispatcher.
constexpr bool DEBUG_SENSOR_EVENT_DETAILS = false;

namespace android {

// Mask for the LSB 2nd, 3rd and fourth bits.
constexpr int REPORTING_MODE_MASK = 0xE;
constexpr int REPORTING_MODE_SHIFT = 1;
constexpr float GRAVITY_MS2_UNIT = 9.80665f;
constexpr float DEGREE_RADIAN_UNIT = 0.0174533f;

/* Convert the sensor data from Linux to Android
 * Linux accelerometer unit is per g,  Android unit is m/s^2
 * Linux gyroscope unit is degree/second, Android unit is radians/second
 */
static void convertFromLinuxToAndroid(std::vector<float>& values,
                                      InputDeviceSensorType sensorType) {
    for (size_t i = 0; i < values.size(); i++) {
        switch (sensorType) {
            case InputDeviceSensorType::ACCELEROMETER:
                values[i] *= GRAVITY_MS2_UNIT;
                break;
            case InputDeviceSensorType::GYROSCOPE:
                values[i] *= DEGREE_RADIAN_UNIT;
                break;
            default:
                break;
        }
    }
}

SensorInputMapper::SensorInputMapper(InputDeviceContext& deviceContext)
      : InputMapper(deviceContext) {}

SensorInputMapper::~SensorInputMapper() {}

uint32_t SensorInputMapper::getSources() {
    return AINPUT_SOURCE_SENSOR;
}

template <typename T>
bool SensorInputMapper::tryGetProperty(std::string keyName, T& outValue) {
    const auto& config = getDeviceContext().getConfiguration();
    return config.tryGetProperty(String8(keyName.c_str()), outValue);
}

void SensorInputMapper::parseSensorConfiguration(InputDeviceSensorType sensorType, int32_t absCode,
                                                 int32_t sensorDataIndex, const Axis& axis) {
    auto it = mSensors.find(sensorType);
    if (it == mSensors.end()) {
        Sensor sensor = createSensor(sensorType, axis);
        sensor.dataVec[sensorDataIndex] = absCode;
        mSensors.emplace(sensorType, sensor);
    } else {
        it->second.dataVec[sensorDataIndex] = absCode;
    }
}

void SensorInputMapper::populateDeviceInfo(InputDeviceInfo* info) {
    InputMapper::populateDeviceInfo(info);

    for (const auto& [sensorType, sensor] : mSensors) {
        info->addSensorInfo(sensor.sensorInfo);
        info->setHasSensor(true);
    }
}

void SensorInputMapper::dump(std::string& dump) {
    dump += INDENT2 "Sensor Input Mapper:\n";
    dump += StringPrintf(INDENT3 " isDeviceEnabled %d\n", getDeviceContext().isDeviceEnabled());
    dump += StringPrintf(INDENT3 " mHasHardwareTimestamp %d\n", mHasHardwareTimestamp);
    dump += INDENT3 "Sensors:\n";
    for (const auto& [sensorType, sensor] : mSensors) {
        dump += StringPrintf(INDENT4 "%s\n", NamedEnum::string(sensorType).c_str());
        dump += StringPrintf(INDENT5 "enabled: %d\n", sensor.enabled);
        dump += StringPrintf(INDENT5 "samplingPeriod: %lld\n", sensor.samplingPeriod.count());
        dump += StringPrintf(INDENT5 "maxBatchReportLatency: %lld\n",
                             sensor.maxBatchReportLatency.count());
        dump += StringPrintf(INDENT5 "maxRange: %f\n", sensor.sensorInfo.maxRange);
        dump += StringPrintf(INDENT5 "power: %f\n", sensor.sensorInfo.power);
        for (ssize_t i = 0; i < SENSOR_VEC_LEN; i++) {
            int32_t rawAxis = sensor.dataVec[i];
            dump += StringPrintf(INDENT5 "[%zd]: rawAxis: %d \n", i, rawAxis);
            const auto it = mAxes.find(rawAxis);
            if (it != mAxes.end()) {
                const Axis& axis = it->second;
                dump += StringPrintf(INDENT5 " min=%0.5f, max=%0.5f, flat=%0.5f, fuzz=%0.5f,"
                                             "resolution=%0.5f\n",
                                     axis.min, axis.max, axis.flat, axis.fuzz, axis.resolution);
                dump += StringPrintf(INDENT5 "  scale=%0.5f, offset=%0.5f\n", axis.scale,
                                     axis.offset);
                dump += StringPrintf(INDENT5 " rawMin=%d, rawMax=%d, "
                                             "rawFlat=%d, rawFuzz=%d, rawResolution=%d\n",
                                     axis.rawAxisInfo.minValue, axis.rawAxisInfo.maxValue,
                                     axis.rawAxisInfo.flat, axis.rawAxisInfo.fuzz,
                                     axis.rawAxisInfo.resolution);
            }
        }
    }
}

void SensorInputMapper::configure(nsecs_t when, const InputReaderConfiguration* config,
                                  uint32_t changes) {
    InputMapper::configure(when, config, changes);

    if (!changes) { // first time only
        mDeviceEnabled = true;
        // Check if device has MSC_TIMESTAMP event.
        mHasHardwareTimestamp = getDeviceContext().hasMscEvent(MSC_TIMESTAMP);
        // Collect all axes.
        for (int32_t abs = ABS_X; abs <= ABS_MAX; abs++) {
            // axis must be claimed by sensor class device
            if (!(getAbsAxisUsage(abs, getDeviceContext().getDeviceClasses())
                          .test(InputDeviceClass::SENSOR))) {
                continue;
            }
            RawAbsoluteAxisInfo rawAxisInfo;
            getAbsoluteAxisInfo(abs, &rawAxisInfo);
            if (rawAxisInfo.valid) {
                AxisInfo axisInfo;
                // Axis doesn't need to be mapped, as sensor mapper doesn't generate any motion
                // input events
                axisInfo.mode = AxisInfo::MODE_NORMAL;
                axisInfo.axis = -1;
                // Check key layout map for sensor data mapping to axes
                auto ret = getDeviceContext().mapSensor(abs);
                if (ret.ok()) {
                    InputDeviceSensorType sensorType = (*ret).first;
                    int32_t sensorDataIndex = (*ret).second;
                    const Axis& axis = createAxis(axisInfo, rawAxisInfo);
                    parseSensorConfiguration(sensorType, abs, sensorDataIndex, axis);

                    mAxes.insert({abs, axis});
                }
            }
        }
    }
}

SensorInputMapper::Axis SensorInputMapper::createAxis(const AxisInfo& axisInfo,
                                                      const RawAbsoluteAxisInfo& rawAxisInfo) {
    // Apply flat override.
    int32_t rawFlat = axisInfo.flatOverride < 0 ? rawAxisInfo.flat : axisInfo.flatOverride;

    float scale = std::numeric_limits<float>::signaling_NaN();
    float offset = 0;

    // resolution is 1 of sensor's unit.  For accelerometer, it is G, for gyroscope,
    // it is degree/s.
    scale = 1.0f / rawAxisInfo.resolution;
    offset = avg(rawAxisInfo.minValue, rawAxisInfo.maxValue) * -scale;

    const float max = rawAxisInfo.maxValue / rawAxisInfo.resolution;
    const float min = rawAxisInfo.minValue / rawAxisInfo.resolution;
    const float flat = rawFlat * scale;
    const float fuzz = rawAxisInfo.fuzz * scale;
    const float resolution = rawAxisInfo.resolution;

    // To eliminate noise while the Sensor is at rest, filter out small variations
    // in axis values up front.
    const float filter = fuzz ? fuzz : flat * 0.25f;
    return Axis(rawAxisInfo, axisInfo, scale, offset, min, max, flat, fuzz, resolution, filter);
}

void SensorInputMapper::reset(nsecs_t when) {
    // Recenter all axes.
    for (std::pair<const int32_t, Axis>& pair : mAxes) {
        Axis& axis = pair.second;
        axis.resetValue();
    }
    mHardwareTimestamp = 0;
    mPrevMscTime = 0;
    InputMapper::reset(when);
}

SensorInputMapper::Sensor SensorInputMapper::createSensor(InputDeviceSensorType sensorType,
                                                          const Axis& axis) {
    InputDeviceIdentifier identifier = getDeviceContext().getDeviceIdentifier();
    // Sensor Id will be assigned to device Id to distinguish same sensor from multiple input
    // devices, in such a way that the sensor Id will be same as input device Id.
    // The sensorType is to distinguish different sensors within one device.
    // One input device can only have 1 sensor for each sensor Type.
    InputDeviceSensorInfo sensorInfo(identifier.name, std::to_string(identifier.vendor),
                                     identifier.version, sensorType,
                                     InputDeviceSensorAccuracy::ACCURACY_HIGH,
                                     axis.max /* maxRange */, axis.scale /* resolution */,
                                     0.0f /* power */, 0 /* minDelay */,
                                     0 /* fifoReservedEventCount */, 0 /* fifoMaxEventCount */,
                                     NamedEnum::string(sensorType), 0 /* maxDelay */, 0 /* flags */,
                                     getDeviceId());

    std::string prefix = "sensor." + NamedEnum::string(sensorType);
    transform(prefix.begin(), prefix.end(), prefix.begin(), ::tolower);

    int32_t reportingMode = 0;
    if (!tryGetProperty(prefix + ".reportingMode", reportingMode)) {
        sensorInfo.flags |= (reportingMode & REPORTING_MODE_MASK) << REPORTING_MODE_SHIFT;
    }

    tryGetProperty(prefix + ".maxDelay", sensorInfo.maxDelay);

    tryGetProperty(prefix + ".minDelay", sensorInfo.minDelay);

    tryGetProperty(prefix + ".power", sensorInfo.power);

    tryGetProperty(prefix + ".fifoReservedEventCount", sensorInfo.fifoReservedEventCount);

    tryGetProperty(prefix + ".fifoMaxEventCount", sensorInfo.fifoMaxEventCount);

    return Sensor(sensorInfo);
}

void SensorInputMapper::processHardWareTimestamp(nsecs_t evTime, int32_t mscTime) {
    // Since MSC_TIMESTAMP initial state is different from the system time, we
    // calculate the difference between two MSC_TIMESTAMP events, and use that
    // to calculate the system time that should be tagged on the event.
    // if the first time MSC_TIMESTAMP, store it
    // else calculate difference between previous and current MSC_TIMESTAMP
    if (mPrevMscTime == 0) {
        mHardwareTimestamp = evTime;
        if (DEBUG_SENSOR_EVENT_DETAILS) {
            ALOGD("Initialize hardware timestamp = %" PRId64, mHardwareTimestamp);
        }
    } else {
        // Calculate the difference between current msc_timestamp and
        // previous msc_timestamp, including when msc_timestamp wraps around.
        uint32_t timeDiff = (mPrevMscTime > static_cast<uint32_t>(mscTime))
                ? (UINT32_MAX - mPrevMscTime + static_cast<uint32_t>(mscTime + 1))
                : (static_cast<uint32_t>(mscTime) - mPrevMscTime);

        mHardwareTimestamp += timeDiff * 1000LL;
    }
    mPrevMscTime = static_cast<uint32_t>(mscTime);
}

void SensorInputMapper::process(const RawEvent* rawEvent) {
    switch (rawEvent->type) {
        case EV_ABS: {
            auto it = mAxes.find(rawEvent->code);
            if (it != mAxes.end()) {
                Axis& axis = it->second;
                axis.newValue = rawEvent->value * axis.scale + axis.offset;
            }
            break;
        }

        case EV_SYN:
            switch (rawEvent->code) {
                case SYN_REPORT:
                    for (std::pair<const int32_t, Axis>& pair : mAxes) {
                        Axis& axis = pair.second;
                        axis.currentValue = axis.newValue;
                    }
                    sync(rawEvent->when, false /*force*/);
                    break;
            }
            break;

        case EV_MSC:
            switch (rawEvent->code) {
                case MSC_TIMESTAMP:
                    // hardware timestamp is nano seconds
                    processHardWareTimestamp(rawEvent->when, rawEvent->value);
                    break;
            }
    }
}

bool SensorInputMapper::setSensorEnabled(InputDeviceSensorType sensorType, bool enabled) {
    auto it = mSensors.find(sensorType);
    if (it == mSensors.end()) {
        return false;
    }

    it->second.enabled = enabled;
    if (!enabled) {
        it->second.resetValue();
    }

    /* Currently we can't enable/disable sensors individually. Enabling any sensor will enable
     * the device
     */
    mDeviceEnabled = false;
    for (const auto& [sensorType, sensor] : mSensors) {
        // If any sensor is on we will turn on the device.
        if (sensor.enabled) {
            mDeviceEnabled = true;
            break;
        }
    }
    return true;
}

void SensorInputMapper::flushSensor(InputDeviceSensorType sensorType) {
    auto it = mSensors.find(sensorType);
    if (it == mSensors.end()) {
        return;
    }
    auto& sensor = it->second;
    sensor.lastSampleTimeNs = 0;
    for (size_t i = 0; i < SENSOR_VEC_LEN; i++) {
        int32_t abs = sensor.dataVec[i];
        auto itAxis = mAxes.find(abs);
        if (itAxis != mAxes.end()) {
            Axis& axis = itAxis->second;
            axis.resetValue();
        }
    }
}

bool SensorInputMapper::enableSensor(InputDeviceSensorType sensorType,
                                     std::chrono::microseconds samplingPeriod,
                                     std::chrono::microseconds maxBatchReportLatency) {
    if (DEBUG_SENSOR_EVENT_DETAILS) {
        ALOGD("Enable Sensor %s samplingPeriod %lld maxBatchReportLatency %lld",
              NamedEnum::string(sensorType).c_str(), samplingPeriod.count(),
              maxBatchReportLatency.count());
    }

    if (!setSensorEnabled(sensorType, true /* enabled */)) {
        return false;
    }

    // Enable device
    if (mDeviceEnabled) {
        getDeviceContext().enableDevice();
    }

    // We know the sensor exists now, update the sampling period and batch report latency.
    auto it = mSensors.find(sensorType);
    it->second.samplingPeriod =
            std::chrono::duration_cast<std::chrono::nanoseconds>(samplingPeriod);
    it->second.maxBatchReportLatency =
            std::chrono::duration_cast<std::chrono::nanoseconds>(maxBatchReportLatency);
    return true;
}

void SensorInputMapper::disableSensor(InputDeviceSensorType sensorType) {
    if (DEBUG_SENSOR_EVENT_DETAILS) {
        ALOGD("Disable Sensor %s", NamedEnum::string(sensorType).c_str());
    }

    if (!setSensorEnabled(sensorType, false /* enabled */)) {
        return;
    }

    // Disable device
    if (!mDeviceEnabled) {
        mHardwareTimestamp = 0;
        mPrevMscTime = 0;
        getDeviceContext().disableDevice();
    }
}

void SensorInputMapper::sync(nsecs_t when, bool force) {
    for (auto& [sensorType, sensor] : mSensors) {
        // Skip if sensor not enabled
        if (!sensor.enabled) {
            continue;
        }
        std::vector<float> values;
        for (ssize_t i = 0; i < SENSOR_VEC_LEN; i++) {
            int32_t abs = sensor.dataVec[i];
            auto it = mAxes.find(abs);
            if (it != mAxes.end()) {
                const Axis& axis = it->second;
                values.push_back(axis.currentValue);
            }
        }

        nsecs_t timestamp = mHasHardwareTimestamp ? mHardwareTimestamp : when;
        if (DEBUG_SENSOR_EVENT_DETAILS) {
            ALOGD("Sensor %s timestamp %" PRIu64 " values [%f %f %f]",
                  NamedEnum::string(sensorType).c_str(), timestamp, values[0], values[1],
                  values[2]);
        }
        if (sensor.lastSampleTimeNs.has_value() &&
            timestamp - sensor.lastSampleTimeNs.value() < sensor.samplingPeriod.count()) {
            if (DEBUG_SENSOR_EVENT_DETAILS) {
                ALOGD("Sensor %s Skip a sample.", NamedEnum::string(sensorType).c_str());
            }
        } else {
            // Convert to Android unit
            convertFromLinuxToAndroid(values, sensorType);
            // Notify dispatcher for sensor event
            NotifySensorArgs args(getContext()->getNextId(), when, getDeviceId(),
                                  AINPUT_SOURCE_SENSOR, sensorType, sensor.sensorInfo.accuracy,
                                  sensor.accuracy !=
                                          sensor.sensorInfo.accuracy /* accuracyChanged */,
                                  timestamp /* hwTimestamp */, values);

            getListener()->notifySensor(&args);
            sensor.lastSampleTimeNs = timestamp;
            sensor.accuracy = sensor.sensorInfo.accuracy;
        }
    }
}

} // namespace android