summaryrefslogtreecommitdiff
path: root/services/inputflinger/tests/EventHub_test.cpp
blob: 6ef6e4498cfe8519dd7b8fa742b7ab47d75085b4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
/*
 * Copyright (C) 2019 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "EventHub.h"

#include "UinputDevice.h"

#include <gtest/gtest.h>
#include <inttypes.h>
#include <linux/uinput.h>
#include <log/log.h>
#include <chrono>

#define TAG "EventHub_test"

using android::createUinputDevice;
using android::EventHub;
using android::EventHubInterface;
using android::InputDeviceIdentifier;
using android::RawEvent;
using android::sp;
using android::UinputHomeKey;
using std::chrono_literals::operator""ms;
using std::chrono_literals::operator""s;

static constexpr bool DEBUG = false;

static void dumpEvents(const std::vector<RawEvent>& events) {
    for (const RawEvent& event : events) {
        if (event.type >= EventHubInterface::FIRST_SYNTHETIC_EVENT) {
            switch (event.type) {
                case EventHubInterface::DEVICE_ADDED:
                    ALOGI("Device added: %i", event.deviceId);
                    break;
                case EventHubInterface::DEVICE_REMOVED:
                    ALOGI("Device removed: %i", event.deviceId);
                    break;
                case EventHubInterface::FINISHED_DEVICE_SCAN:
                    ALOGI("Finished device scan.");
                    break;
            }
        } else {
            ALOGI("Device %" PRId32 " : time = %" PRId64 ", type %i, code %i, value %i",
                  event.deviceId, event.when, event.type, event.code, event.value);
        }
    }
}

// --- EventHubTest ---
class EventHubTest : public testing::Test {
protected:
    std::unique_ptr<EventHubInterface> mEventHub;
    // We are only going to emulate a single input device currently.
    std::unique_ptr<UinputHomeKey> mKeyboard;
    int32_t mDeviceId;

    virtual void SetUp() override {
        mEventHub = std::make_unique<EventHub>();
        consumeInitialDeviceAddedEvents();
        mKeyboard = createUinputDevice<UinputHomeKey>();
        ASSERT_NO_FATAL_FAILURE(mDeviceId = waitForDeviceCreation());
    }
    virtual void TearDown() override {
        mKeyboard.reset();
        waitForDeviceClose(mDeviceId);
        assertNoMoreEvents();
    }

    /**
     * Return the device id of the created device.
     */
    int32_t waitForDeviceCreation();
    void waitForDeviceClose(int32_t deviceId);
    void consumeInitialDeviceAddedEvents();
    void assertNoMoreEvents();
    /**
     * Read events from the EventHub.
     *
     * If expectedEvents is set, wait for a significant period of time to try and ensure that
     * the expected number of events has been read. The number of returned events
     * may be smaller (if timeout has been reached) or larger than expectedEvents.
     *
     * If expectedEvents is not set, return all of the immediately available events.
     */
    std::vector<RawEvent> getEvents(std::optional<size_t> expectedEvents = std::nullopt);
};

std::vector<RawEvent> EventHubTest::getEvents(std::optional<size_t> expectedEvents) {
    static constexpr size_t EVENT_BUFFER_SIZE = 256;
    std::array<RawEvent, EVENT_BUFFER_SIZE> eventBuffer;
    std::vector<RawEvent> events;

    while (true) {
        std::chrono::milliseconds timeout = 0s;
        if (expectedEvents) {
            timeout = 2s;
        }
        const size_t count =
                mEventHub->getEvents(timeout.count(), eventBuffer.data(), eventBuffer.size());
        if (count == 0) {
            break;
        }
        events.insert(events.end(), eventBuffer.begin(), eventBuffer.begin() + count);
        if (expectedEvents && events.size() >= *expectedEvents) {
            break;
        }
    }
    if (DEBUG) {
        dumpEvents(events);
    }
    return events;
}

/**
 * Since the test runs on a real platform, there will be existing devices
 * in addition to the test devices being added. Therefore, when EventHub is first created,
 * it will return a lot of "device added" type of events.
 */
void EventHubTest::consumeInitialDeviceAddedEvents() {
    std::vector<RawEvent> events = getEvents();
    std::set<int32_t /*deviceId*/> existingDevices;
    // All of the events should be DEVICE_ADDED type, except the last one.
    for (size_t i = 0; i < events.size() - 1; i++) {
        const RawEvent& event = events[i];
        EXPECT_EQ(EventHubInterface::DEVICE_ADDED, event.type);
        existingDevices.insert(event.deviceId);
    }
    // None of the existing system devices should be changing while this test is run.
    // Check that the returned device ids are unique for all of the existing devices.
    EXPECT_EQ(existingDevices.size(), events.size() - 1);
    // The last event should be "finished device scan"
    EXPECT_EQ(EventHubInterface::FINISHED_DEVICE_SCAN, events[events.size() - 1].type);
}

int32_t EventHubTest::waitForDeviceCreation() {
    // Wait a little longer than usual, to ensure input device has time to be created
    std::vector<RawEvent> events = getEvents(2);
    if (events.size() != 2) {
        ADD_FAILURE() << "Instead of 2 events, received " << events.size();
        return 0; // this value is unused
    }
    const RawEvent& deviceAddedEvent = events[0];
    EXPECT_EQ(static_cast<int32_t>(EventHubInterface::DEVICE_ADDED), deviceAddedEvent.type);
    InputDeviceIdentifier identifier = mEventHub->getDeviceIdentifier(deviceAddedEvent.deviceId);
    const int32_t deviceId = deviceAddedEvent.deviceId;
    EXPECT_EQ(identifier.name, mKeyboard->getName());
    const RawEvent& finishedDeviceScanEvent = events[1];
    EXPECT_EQ(static_cast<int32_t>(EventHubInterface::FINISHED_DEVICE_SCAN),
              finishedDeviceScanEvent.type);
    return deviceId;
}

void EventHubTest::waitForDeviceClose(int32_t deviceId) {
    std::vector<RawEvent> events = getEvents(2);
    ASSERT_EQ(2U, events.size());
    const RawEvent& deviceRemovedEvent = events[0];
    EXPECT_EQ(static_cast<int32_t>(EventHubInterface::DEVICE_REMOVED), deviceRemovedEvent.type);
    EXPECT_EQ(deviceId, deviceRemovedEvent.deviceId);
    const RawEvent& finishedDeviceScanEvent = events[1];
    EXPECT_EQ(static_cast<int32_t>(EventHubInterface::FINISHED_DEVICE_SCAN),
              finishedDeviceScanEvent.type);
}

void EventHubTest::assertNoMoreEvents() {
    std::vector<RawEvent> events = getEvents();
    ASSERT_TRUE(events.empty());
}

/**
 * Ensure that two identical devices get assigned unique descriptors from EventHub.
 */
TEST_F(EventHubTest, DevicesWithMatchingUniqueIdsAreUnique) {
    std::unique_ptr<UinputHomeKey> keyboard2 = createUinputDevice<UinputHomeKey>();
    int32_t deviceId2;
    ASSERT_NO_FATAL_FAILURE(deviceId2 = waitForDeviceCreation());

    ASSERT_NE(mEventHub->getDeviceIdentifier(mDeviceId).descriptor,
              mEventHub->getDeviceIdentifier(deviceId2).descriptor);
    keyboard2.reset();
    waitForDeviceClose(deviceId2);
}

/**
 * Ensure that input_events are generated with monotonic clock.
 * That means input_event should receive a timestamp that is in the future of the time
 * before the event was sent.
 * Input system uses CLOCK_MONOTONIC everywhere in the code base.
 */
TEST_F(EventHubTest, InputEvent_TimestampIsMonotonic) {
    nsecs_t lastEventTime = systemTime(SYSTEM_TIME_MONOTONIC);
    ASSERT_NO_FATAL_FAILURE(mKeyboard->pressAndReleaseHomeKey());

    std::vector<RawEvent> events = getEvents(4);
    ASSERT_EQ(4U, events.size()) << "Expected to receive 2 keys and 2 syncs, total of 4 events";
    for (const RawEvent& event : events) {
        // Cannot use strict comparison because the events may happen too quickly
        ASSERT_LE(lastEventTime, event.when) << "Event must have occurred after the key was sent";
        ASSERT_LT(std::chrono::nanoseconds(event.when - lastEventTime), 100ms)
                << "Event times are too far apart";
        lastEventTime = event.when; // Ensure all returned events are monotonic
    }
}

// --- BitArrayTest ---
class BitArrayTest : public testing::Test {
protected:
    static constexpr size_t SINGLE_ELE_BITS = 32UL;
    static constexpr size_t MULTI_ELE_BITS = 256UL;

    virtual void SetUp() override {
        mBitmaskSingle.loadFromBuffer(mBufferSingle);
        mBitmaskMulti.loadFromBuffer(mBufferMulti);
    }

    android::BitArray<SINGLE_ELE_BITS> mBitmaskSingle;
    android::BitArray<MULTI_ELE_BITS> mBitmaskMulti;

private:
    const typename android::BitArray<SINGLE_ELE_BITS>::Buffer mBufferSingle = {
            0x800F0F0FUL // bit 0 - 31
    };
    const typename android::BitArray<MULTI_ELE_BITS>::Buffer mBufferMulti = {
            0xFFFFFFFFUL, // bit 0 - 31
            0x01000001UL, // bit 32 - 63
            0x00000000UL, // bit 64 - 95
            0x80000000UL, // bit 96 - 127
            0x00000000UL, // bit 128 - 159
            0x00000000UL, // bit 160 - 191
            0x80000008UL, // bit 192 - 223
            0x00000000UL, // bit 224 - 255
    };
};

TEST_F(BitArrayTest, SetBit) {
    ASSERT_TRUE(mBitmaskSingle.test(0));
    ASSERT_TRUE(mBitmaskSingle.test(31));
    ASSERT_FALSE(mBitmaskSingle.test(7));

    ASSERT_TRUE(mBitmaskMulti.test(32));
    ASSERT_TRUE(mBitmaskMulti.test(56));
    ASSERT_FALSE(mBitmaskMulti.test(192));
    ASSERT_TRUE(mBitmaskMulti.test(223));
    ASSERT_FALSE(mBitmaskMulti.test(255));
}

TEST_F(BitArrayTest, AnyBit) {
    ASSERT_TRUE(mBitmaskSingle.any(31, 32));
    ASSERT_FALSE(mBitmaskSingle.any(12, 16));

    ASSERT_TRUE(mBitmaskMulti.any(31, 32));
    ASSERT_FALSE(mBitmaskMulti.any(33, 33));
    ASSERT_TRUE(mBitmaskMulti.any(32, 55));
    ASSERT_TRUE(mBitmaskMulti.any(33, 57));
    ASSERT_FALSE(mBitmaskMulti.any(33, 55));
    ASSERT_FALSE(mBitmaskMulti.any(130, 190));

    ASSERT_FALSE(mBitmaskMulti.any(128, 195));
    ASSERT_TRUE(mBitmaskMulti.any(128, 196));
    ASSERT_TRUE(mBitmaskMulti.any(128, 224));
    ASSERT_FALSE(mBitmaskMulti.any(255, 256));
}

TEST_F(BitArrayTest, SetBit_InvalidBitIndex) {
    ASSERT_FALSE(mBitmaskSingle.test(32));
    ASSERT_FALSE(mBitmaskMulti.test(256));
}

TEST_F(BitArrayTest, AnyBit_InvalidBitIndex) {
    ASSERT_FALSE(mBitmaskSingle.any(32, 32));
    ASSERT_FALSE(mBitmaskSingle.any(33, 34));

    ASSERT_FALSE(mBitmaskMulti.any(256, 256));
    ASSERT_FALSE(mBitmaskMulti.any(257, 258));
    ASSERT_FALSE(mBitmaskMulti.any(0, 0));
}