summaryrefslogtreecommitdiff
path: root/services/sensorservice/SensorDeviceUtils.cpp
blob: 5aa283e240a2f297b4966b4cff738f329b8cf53f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
/*
 * Copyright (C) 2017 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "SensorDeviceUtils.h"

#include <android/hardware/sensors/1.0/ISensors.h>
#include <android/hardware/sensors/2.1/ISensors.h>
#include <utils/Log.h>

#include <chrono>
#include <thread>

using ::android::hardware::Void;
using SensorTypeV2_1 = android::hardware::sensors::V2_1::SensorType;
using namespace android::hardware::sensors::V1_0;

namespace android {
namespace SensorDeviceUtils {

void quantizeSensorEventValues(sensors_event_t *event, float resolution) {
    if (resolution == 0) {
        return;
    }

    size_t axes = 0;
    switch ((SensorTypeV2_1)event->type) {
        case SensorTypeV2_1::ACCELEROMETER:
        case SensorTypeV2_1::MAGNETIC_FIELD:
        case SensorTypeV2_1::GYROSCOPE:
        case SensorTypeV2_1::MAGNETIC_FIELD_UNCALIBRATED:
        case SensorTypeV2_1::GYROSCOPE_UNCALIBRATED:
        case SensorTypeV2_1::ACCELEROMETER_UNCALIBRATED:
            axes = 3;
            break;
        case SensorTypeV2_1::DEVICE_ORIENTATION:
        case SensorTypeV2_1::LIGHT:
        case SensorTypeV2_1::PRESSURE:
        case SensorTypeV2_1::TEMPERATURE:
        case SensorTypeV2_1::PROXIMITY:
        case SensorTypeV2_1::RELATIVE_HUMIDITY:
        case SensorTypeV2_1::AMBIENT_TEMPERATURE:
        case SensorTypeV2_1::SIGNIFICANT_MOTION:
        case SensorTypeV2_1::STEP_DETECTOR:
        case SensorTypeV2_1::TILT_DETECTOR:
        case SensorTypeV2_1::WAKE_GESTURE:
        case SensorTypeV2_1::GLANCE_GESTURE:
        case SensorTypeV2_1::PICK_UP_GESTURE:
        case SensorTypeV2_1::WRIST_TILT_GESTURE:
        case SensorTypeV2_1::STATIONARY_DETECT:
        case SensorTypeV2_1::MOTION_DETECT:
        case SensorTypeV2_1::HEART_BEAT:
        case SensorTypeV2_1::LOW_LATENCY_OFFBODY_DETECT:
        case SensorTypeV2_1::HINGE_ANGLE:
            axes = 1;
            break;
        default:
            // No other sensors have data that needs to be quantized.
            break;
    }

    // sensor_event_t is a union so we're able to perform the same quanitization action for most
    // sensors by only knowing the number of axes their output data has.
    for (size_t i = 0; i < axes; i++) {
        quantizeValue(&event->data[i], resolution);
    }
}

float resolutionForSensor(const sensor_t &sensor) {
    switch ((SensorTypeV2_1)sensor.type) {
        case SensorTypeV2_1::ACCELEROMETER:
        case SensorTypeV2_1::MAGNETIC_FIELD:
        case SensorTypeV2_1::GYROSCOPE:
        case SensorTypeV2_1::MAGNETIC_FIELD_UNCALIBRATED:
        case SensorTypeV2_1::GYROSCOPE_UNCALIBRATED:
        case SensorTypeV2_1::ACCELEROMETER_UNCALIBRATED: {
            if (sensor.maxRange == 0) {
                ALOGE("No max range for sensor type %d, can't determine appropriate resolution",
                        sensor.type);
                return sensor.resolution;
            }
            // Accel, gyro, and mag shouldn't have more than 24 bits of resolution on the most
            // advanced devices.
            double lowerBound = 2.0 * sensor.maxRange / std::pow(2, 24);

            // No need to check the upper bound as that's already enforced through CTS.
            return std::max(sensor.resolution, static_cast<float>(lowerBound));
        }
        case SensorTypeV2_1::SIGNIFICANT_MOTION:
        case SensorTypeV2_1::STEP_DETECTOR:
        case SensorTypeV2_1::STEP_COUNTER:
        case SensorTypeV2_1::TILT_DETECTOR:
        case SensorTypeV2_1::WAKE_GESTURE:
        case SensorTypeV2_1::GLANCE_GESTURE:
        case SensorTypeV2_1::PICK_UP_GESTURE:
        case SensorTypeV2_1::WRIST_TILT_GESTURE:
        case SensorTypeV2_1::STATIONARY_DETECT:
        case SensorTypeV2_1::MOTION_DETECT:
            // Ignore input resolution as all of these sensors are required to have a resolution of
            // 1.
            return 1.0f;
        default:
            // fall through and return the current resolution for all other types
            break;
    }
    return sensor.resolution;
}

HidlServiceRegistrationWaiter::HidlServiceRegistrationWaiter() {
}

void HidlServiceRegistrationWaiter::onFirstRef() {
    // Creating sp<...>(this) in the constructor should be avoided, hence
    // registerForNotifications is called in onFirstRef callback.
    mRegistered = ISensors::registerForNotifications("default", this);
}

Return<void> HidlServiceRegistrationWaiter::onRegistration(
        const hidl_string &fqName, const hidl_string &name, bool preexisting) {
    ALOGV("onRegistration fqName %s, name %s, preexisting %d",
          fqName.c_str(), name.c_str(), preexisting);

    {
        std::lock_guard<std::mutex> lk(mLock);
        mRestartObserved = true;
    }
    mCondition.notify_all();
    return Void();
}

void HidlServiceRegistrationWaiter::reset() {
    std::lock_guard<std::mutex> lk(mLock);
    mRestartObserved = false;
}

bool HidlServiceRegistrationWaiter::wait() {
    constexpr int DEFAULT_WAIT_MS = 100;
    constexpr int TIMEOUT_MS = 1000;

    if (!mRegistered) {
        ALOGW("Cannot register service notification, use default wait(%d ms)", DEFAULT_WAIT_MS);
        std::this_thread::sleep_for(std::chrono::milliseconds(DEFAULT_WAIT_MS));
        // not sure if service is actually restarted
        return false;
    }

    std::unique_lock<std::mutex> lk(mLock);
    return mCondition.wait_for(lk, std::chrono::milliseconds(TIMEOUT_MS),
            [this]{return mRestartObserved;});
}

} // namespace SensorDeviceUtils
} // namespace android