summaryrefslogtreecommitdiff
path: root/services/sensorservice/SensorService.cpp
blob: dc491d97c0877f83addc827218cab1cfb1e664e5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
/*
 * Copyright (C) 2010 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include <binder/AppOpsManager.h>
#include <binder/BinderService.h>
#include <binder/IServiceManager.h>
#include <binder/PermissionCache.h>
#include <cutils/ashmem.h>
#include <cutils/properties.h>
#include <hardware/sensors.h>
#include <hardware_legacy/power.h>
#include <openssl/digest.h>
#include <openssl/hmac.h>
#include <openssl/rand.h>
#include <sensor/SensorEventQueue.h>
#include <utils/SystemClock.h>

#include "BatteryService.h"
#include "CorrectedGyroSensor.h"
#include "GravitySensor.h"
#include "LinearAccelerationSensor.h"
#include "OrientationSensor.h"
#include "RotationVectorSensor.h"
#include "SensorFusion.h"
#include "SensorInterface.h"

#include "SensorService.h"
#include "SensorDirectConnection.h"
#include "SensorEventAckReceiver.h"
#include "SensorEventConnection.h"
#include "SensorRecord.h"
#include "SensorRegistrationInfo.h"

#include <inttypes.h>
#include <math.h>
#include <sched.h>
#include <stdint.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

namespace android {
// ---------------------------------------------------------------------------

/*
 * Notes:
 *
 * - what about a gyro-corrected magnetic-field sensor?
 * - run mag sensor from time to time to force calibration
 * - gravity sensor length is wrong (=> drift in linear-acc sensor)
 *
 */

const char* SensorService::WAKE_LOCK_NAME = "SensorService_wakelock";
uint8_t SensorService::sHmacGlobalKey[128] = {};
bool SensorService::sHmacGlobalKeyIsValid = false;

#define SENSOR_SERVICE_DIR "/data/system/sensor_service"
#define SENSOR_SERVICE_HMAC_KEY_FILE  SENSOR_SERVICE_DIR "/hmac_key"
#define SENSOR_SERVICE_SCHED_FIFO_PRIORITY 10

// Permissions.
static const String16 sDumpPermission("android.permission.DUMP");
static const String16 sLocationHardwarePermission("android.permission.LOCATION_HARDWARE");

SensorService::SensorService()
    : mInitCheck(NO_INIT), mSocketBufferSize(SOCKET_BUFFER_SIZE_NON_BATCHED),
      mWakeLockAcquired(false) {
}

bool SensorService::initializeHmacKey() {
    int fd = open(SENSOR_SERVICE_HMAC_KEY_FILE, O_RDONLY|O_CLOEXEC);
    if (fd != -1) {
        int result = read(fd, sHmacGlobalKey, sizeof(sHmacGlobalKey));
        close(fd);
        if (result == sizeof(sHmacGlobalKey)) {
            return true;
        }
        ALOGW("Unable to read HMAC key; generating new one.");
    }

    if (RAND_bytes(sHmacGlobalKey, sizeof(sHmacGlobalKey)) == -1) {
        ALOGW("Can't generate HMAC key; dynamic sensor getId() will be wrong.");
        return false;
    }

    // We need to make sure this is only readable to us.
    bool wroteKey = false;
    mkdir(SENSOR_SERVICE_DIR, S_IRWXU);
    fd = open(SENSOR_SERVICE_HMAC_KEY_FILE, O_WRONLY|O_CREAT|O_EXCL|O_CLOEXEC,
              S_IRUSR|S_IWUSR);
    if (fd != -1) {
        int result = write(fd, sHmacGlobalKey, sizeof(sHmacGlobalKey));
        close(fd);
        wroteKey = (result == sizeof(sHmacGlobalKey));
    }
    if (wroteKey) {
        ALOGI("Generated new HMAC key.");
    } else {
        ALOGW("Unable to write HMAC key; dynamic sensor getId() will change "
              "after reboot.");
    }
    // Even if we failed to write the key we return true, because we did
    // initialize the HMAC key.
    return true;
}

// Set main thread to SCHED_FIFO to lower sensor event latency when system is under load
void SensorService::enableSchedFifoMode() {
    struct sched_param param = {0};
    param.sched_priority = SENSOR_SERVICE_SCHED_FIFO_PRIORITY;
    if (sched_setscheduler(getTid(), SCHED_FIFO | SCHED_RESET_ON_FORK, &param) != 0) {
        ALOGE("Couldn't set SCHED_FIFO for SensorService thread");
    }
}

void SensorService::onFirstRef() {
    ALOGD("nuSensorService starting...");
    SensorDevice& dev(SensorDevice::getInstance());

    sHmacGlobalKeyIsValid = initializeHmacKey();

    if (dev.initCheck() == NO_ERROR) {
        sensor_t const* list;
        ssize_t count = dev.getSensorList(&list);
        if (count > 0) {
            ssize_t orientationIndex = -1;
            bool hasGyro = false, hasAccel = false, hasMag = false;
            uint32_t virtualSensorsNeeds =
                    (1<<SENSOR_TYPE_GRAVITY) |
                    (1<<SENSOR_TYPE_LINEAR_ACCELERATION) |
                    (1<<SENSOR_TYPE_ROTATION_VECTOR) |
                    (1<<SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR) |
                    (1<<SENSOR_TYPE_GAME_ROTATION_VECTOR);

            for (ssize_t i=0 ; i<count ; i++) {
                bool useThisSensor=true;

                switch (list[i].type) {
                    case SENSOR_TYPE_ACCELEROMETER:
                        hasAccel = true;
                        break;
                    case SENSOR_TYPE_MAGNETIC_FIELD:
                        hasMag = true;
                        break;
                    case SENSOR_TYPE_ORIENTATION:
                        orientationIndex = i;
                        break;
                    case SENSOR_TYPE_GYROSCOPE:
                    case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
                        hasGyro = true;
                        break;
                    case SENSOR_TYPE_GRAVITY:
                    case SENSOR_TYPE_LINEAR_ACCELERATION:
                    case SENSOR_TYPE_ROTATION_VECTOR:
                    case SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR:
                    case SENSOR_TYPE_GAME_ROTATION_VECTOR:
                        if (IGNORE_HARDWARE_FUSION) {
                            useThisSensor = false;
                        } else {
                            virtualSensorsNeeds &= ~(1<<list[i].type);
                        }
                        break;
                }
                if (useThisSensor) {
                    registerSensor( new HardwareSensor(list[i]) );
                }
            }

            // it's safe to instantiate the SensorFusion object here
            // (it wants to be instantiated after h/w sensors have been
            // registered)
            SensorFusion::getInstance();

            if (hasGyro && hasAccel && hasMag) {
                // Add Android virtual sensors if they're not already
                // available in the HAL
                bool needRotationVector =
                        (virtualSensorsNeeds & (1<<SENSOR_TYPE_ROTATION_VECTOR)) != 0;

                registerSensor(new RotationVectorSensor(), !needRotationVector, true);
                registerSensor(new OrientationSensor(), !needRotationVector, true);

                bool needLinearAcceleration =
                        (virtualSensorsNeeds & (1<<SENSOR_TYPE_LINEAR_ACCELERATION)) != 0;

                registerSensor(new LinearAccelerationSensor(list, count),
                               !needLinearAcceleration, true);

                // virtual debugging sensors are not for user
                registerSensor( new CorrectedGyroSensor(list, count), true, true);
                registerSensor( new GyroDriftSensor(), true, true);
            }

            if (hasAccel && hasGyro) {
                bool needGravitySensor = (virtualSensorsNeeds & (1<<SENSOR_TYPE_GRAVITY)) != 0;
                registerSensor(new GravitySensor(list, count), !needGravitySensor, true);

                bool needGameRotationVector =
                        (virtualSensorsNeeds & (1<<SENSOR_TYPE_GAME_ROTATION_VECTOR)) != 0;
                registerSensor(new GameRotationVectorSensor(), !needGameRotationVector, true);
            }

            if (hasAccel && hasMag) {
                bool needGeoMagRotationVector =
                        (virtualSensorsNeeds & (1<<SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR)) != 0;
                registerSensor(new GeoMagRotationVectorSensor(), !needGeoMagRotationVector, true);
            }

            // Check if the device really supports batching by looking at the FIFO event
            // counts for each sensor.
            bool batchingSupported = false;
            mSensors.forEachSensor(
                    [&batchingSupported] (const Sensor& s) -> bool {
                        if (s.getFifoMaxEventCount() > 0) {
                            batchingSupported = true;
                        }
                        return !batchingSupported;
                    });

            if (batchingSupported) {
                // Increase socket buffer size to a max of 100 KB for batching capabilities.
                mSocketBufferSize = MAX_SOCKET_BUFFER_SIZE_BATCHED;
            } else {
                mSocketBufferSize = SOCKET_BUFFER_SIZE_NON_BATCHED;
            }

            // Compare the socketBufferSize value against the system limits and limit
            // it to maxSystemSocketBufferSize if necessary.
            FILE *fp = fopen("/proc/sys/net/core/wmem_max", "r");
            char line[128];
            if (fp != NULL && fgets(line, sizeof(line), fp) != NULL) {
                line[sizeof(line) - 1] = '\0';
                size_t maxSystemSocketBufferSize;
                sscanf(line, "%zu", &maxSystemSocketBufferSize);
                if (mSocketBufferSize > maxSystemSocketBufferSize) {
                    mSocketBufferSize = maxSystemSocketBufferSize;
                }
            }
            if (fp) {
                fclose(fp);
            }

            mWakeLockAcquired = false;
            mLooper = new Looper(false);
            const size_t minBufferSize = SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT;
            mSensorEventBuffer = new sensors_event_t[minBufferSize];
            mSensorEventScratch = new sensors_event_t[minBufferSize];
            mMapFlushEventsToConnections = new wp<const SensorEventConnection> [minBufferSize];
            mCurrentOperatingMode = NORMAL;

            mNextSensorRegIndex = 0;
            for (int i = 0; i < SENSOR_REGISTRATIONS_BUF_SIZE; ++i) {
                mLastNSensorRegistrations.push();
            }

            mInitCheck = NO_ERROR;
            mAckReceiver = new SensorEventAckReceiver(this);
            mAckReceiver->run("SensorEventAckReceiver", PRIORITY_URGENT_DISPLAY);
            run("SensorService", PRIORITY_URGENT_DISPLAY);

            // priority can only be changed after run
            enableSchedFifoMode();
        }
    }
}

const Sensor& SensorService::registerSensor(SensorInterface* s, bool isDebug, bool isVirtual) {
    int handle = s->getSensor().getHandle();
    int type = s->getSensor().getType();
    if (mSensors.add(handle, s, isDebug, isVirtual)){
        mRecentEvent.emplace(handle, new RecentEventLogger(type));
        return s->getSensor();
    } else {
        return mSensors.getNonSensor();
    }
}

const Sensor& SensorService::registerDynamicSensorLocked(SensorInterface* s, bool isDebug) {
    return registerSensor(s, isDebug);
}

bool SensorService::unregisterDynamicSensorLocked(int handle) {
    bool ret = mSensors.remove(handle);

    const auto i = mRecentEvent.find(handle);
    if (i != mRecentEvent.end()) {
        delete i->second;
        mRecentEvent.erase(i);
    }
    return ret;
}

const Sensor& SensorService::registerVirtualSensor(SensorInterface* s, bool isDebug) {
    return registerSensor(s, isDebug, true);
}

SensorService::~SensorService() {
    for (auto && entry : mRecentEvent) {
        delete entry.second;
    }
}

status_t SensorService::dump(int fd, const Vector<String16>& args) {
    String8 result;
    if (!PermissionCache::checkCallingPermission(sDumpPermission)) {
        result.appendFormat("Permission Denial: can't dump SensorService from pid=%d, uid=%d\n",
                IPCThreadState::self()->getCallingPid(),
                IPCThreadState::self()->getCallingUid());
    } else {
        bool privileged = IPCThreadState::self()->getCallingUid() == 0;
        if (args.size() > 2) {
           return INVALID_OPERATION;
        }
        Mutex::Autolock _l(mLock);
        SensorDevice& dev(SensorDevice::getInstance());
        if (args.size() == 2 && args[0] == String16("restrict")) {
            // If already in restricted mode. Ignore.
            if (mCurrentOperatingMode == RESTRICTED) {
                return status_t(NO_ERROR);
            }
            // If in any mode other than normal, ignore.
            if (mCurrentOperatingMode != NORMAL) {
                return INVALID_OPERATION;
            }

            mCurrentOperatingMode = RESTRICTED;
            // temporarily stop all sensor direct report
            for (auto &i : mDirectConnections) {
                sp<SensorDirectConnection> connection(i.promote());
                if (connection != nullptr) {
                    connection->stopAll(true /* backupRecord */);
                }
            }

            dev.disableAllSensors();
            // Clear all pending flush connections for all active sensors. If one of the active
            // connections has called flush() and the underlying sensor has been disabled before a
            // flush complete event is returned, we need to remove the connection from this queue.
            for (size_t i=0 ; i< mActiveSensors.size(); ++i) {
                mActiveSensors.valueAt(i)->clearAllPendingFlushConnections();
            }
            mWhiteListedPackage.setTo(String8(args[1]));
            return status_t(NO_ERROR);
        } else if (args.size() == 1 && args[0] == String16("enable")) {
            // If currently in restricted mode, reset back to NORMAL mode else ignore.
            if (mCurrentOperatingMode == RESTRICTED) {
                mCurrentOperatingMode = NORMAL;
                dev.enableAllSensors();
                // recover all sensor direct report
                for (auto &i : mDirectConnections) {
                    sp<SensorDirectConnection> connection(i.promote());
                    if (connection != nullptr) {
                        connection->recoverAll();
                    }
                }
            }
            if (mCurrentOperatingMode == DATA_INJECTION) {
               resetToNormalModeLocked();
            }
            mWhiteListedPackage.clear();
            return status_t(NO_ERROR);
        } else if (args.size() == 2 && args[0] == String16("data_injection")) {
            if (mCurrentOperatingMode == NORMAL) {
                dev.disableAllSensors();
                status_t err = dev.setMode(DATA_INJECTION);
                if (err == NO_ERROR) {
                    mCurrentOperatingMode = DATA_INJECTION;
                } else {
                    // Re-enable sensors.
                    dev.enableAllSensors();
                }
                mWhiteListedPackage.setTo(String8(args[1]));
                return NO_ERROR;
            } else if (mCurrentOperatingMode == DATA_INJECTION) {
                // Already in DATA_INJECTION mode. Treat this as a no_op.
                return NO_ERROR;
            } else {
                // Transition to data injection mode supported only from NORMAL mode.
                return INVALID_OPERATION;
            }
        } else if (!mSensors.hasAnySensor()) {
            result.append("No Sensors on the device\n");
            result.appendFormat("devInitCheck : %d\n", SensorDevice::getInstance().initCheck());
        } else {
            // Default dump the sensor list and debugging information.
            //
            result.append("Sensor Device:\n");
            result.append(SensorDevice::getInstance().dump().c_str());

            result.append("Sensor List:\n");
            result.append(mSensors.dump().c_str());

            result.append("Fusion States:\n");
            SensorFusion::getInstance().dump(result);

            result.append("Recent Sensor events:\n");
            for (auto&& i : mRecentEvent) {
                sp<SensorInterface> s = mSensors.getInterface(i.first);
                if (!i.second->isEmpty()) {
                    if (privileged || s->getSensor().getRequiredPermission().isEmpty()) {
                        i.second->setFormat("normal");
                    } else {
                        i.second->setFormat("mask_data");
                    }
                    // if there is events and sensor does not need special permission.
                    result.appendFormat("%s: ", s->getSensor().getName().string());
                    result.append(i.second->dump().c_str());
                }
            }

            result.append("Active sensors:\n");
            for (size_t i=0 ; i<mActiveSensors.size() ; i++) {
                int handle = mActiveSensors.keyAt(i);
                result.appendFormat("%s (handle=0x%08x, connections=%zu)\n",
                        getSensorName(handle).string(),
                        handle,
                        mActiveSensors.valueAt(i)->getNumConnections());
            }

            result.appendFormat("Socket Buffer size = %zd events\n",
                                mSocketBufferSize/sizeof(sensors_event_t));
            result.appendFormat("WakeLock Status: %s \n", mWakeLockAcquired ? "acquired" :
                    "not held");
            result.appendFormat("Mode :");
            switch(mCurrentOperatingMode) {
               case NORMAL:
                   result.appendFormat(" NORMAL\n");
                   break;
               case RESTRICTED:
                   result.appendFormat(" RESTRICTED : %s\n", mWhiteListedPackage.string());
                   break;
               case DATA_INJECTION:
                   result.appendFormat(" DATA_INJECTION : %s\n", mWhiteListedPackage.string());
            }

            result.appendFormat("%zd active connections\n", mActiveConnections.size());
            for (size_t i=0 ; i < mActiveConnections.size() ; i++) {
                sp<SensorEventConnection> connection(mActiveConnections[i].promote());
                if (connection != 0) {
                    result.appendFormat("Connection Number: %zu \n", i);
                    connection->dump(result);
                }
            }

            result.appendFormat("%zd direct connections\n", mDirectConnections.size());
            for (size_t i = 0 ; i < mDirectConnections.size() ; i++) {
                sp<SensorDirectConnection> connection(mDirectConnections[i].promote());
                if (connection != nullptr) {
                    result.appendFormat("Direct connection %zu:\n", i);
                    connection->dump(result);
                }
            }

            result.appendFormat("Previous Registrations:\n");
            // Log in the reverse chronological order.
            int currentIndex = (mNextSensorRegIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) %
                SENSOR_REGISTRATIONS_BUF_SIZE;
            const int startIndex = currentIndex;
            do {
                const SensorRegistrationInfo& reg_info = mLastNSensorRegistrations[currentIndex];
                if (SensorRegistrationInfo::isSentinel(reg_info)) {
                    // Ignore sentinel, proceed to next item.
                    currentIndex = (currentIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) %
                        SENSOR_REGISTRATIONS_BUF_SIZE;
                    continue;
                }
                result.appendFormat("%s\n", reg_info.dump().c_str());
                currentIndex = (currentIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) %
                        SENSOR_REGISTRATIONS_BUF_SIZE;
            } while(startIndex != currentIndex);
        }
    }
    write(fd, result.string(), result.size());
    return NO_ERROR;
}

//TODO: move to SensorEventConnection later
void SensorService::cleanupAutoDisabledSensorLocked(const sp<SensorEventConnection>& connection,
        sensors_event_t const* buffer, const int count) {
    for (int i=0 ; i<count ; i++) {
        int handle = buffer[i].sensor;
        if (buffer[i].type == SENSOR_TYPE_META_DATA) {
            handle = buffer[i].meta_data.sensor;
        }
        if (connection->hasSensor(handle)) {
            sp<SensorInterface> si = getSensorInterfaceFromHandle(handle);
            // If this buffer has an event from a one_shot sensor and this connection is registered
            // for this particular one_shot sensor, try cleaning up the connection.
            if (si != nullptr &&
                si->getSensor().getReportingMode() == AREPORTING_MODE_ONE_SHOT) {
                si->autoDisable(connection.get(), handle);
                cleanupWithoutDisableLocked(connection, handle);
            }

        }
   }
}

bool SensorService::threadLoop() {
    ALOGD("nuSensorService thread starting...");

    // each virtual sensor could generate an event per "real" event, that's why we need to size
    // numEventMax much smaller than MAX_RECEIVE_BUFFER_EVENT_COUNT.  in practice, this is too
    // aggressive, but guaranteed to be enough.
    const size_t vcount = mSensors.getVirtualSensors().size();
    const size_t minBufferSize = SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT;
    const size_t numEventMax = minBufferSize / (1 + vcount);

    SensorDevice& device(SensorDevice::getInstance());

    const int halVersion = device.getHalDeviceVersion();
    do {
        ssize_t count = device.poll(mSensorEventBuffer, numEventMax);
        if (count < 0) {
            ALOGE("sensor poll failed (%s)", strerror(-count));
            break;
        }

        // Reset sensors_event_t.flags to zero for all events in the buffer.
        for (int i = 0; i < count; i++) {
             mSensorEventBuffer[i].flags = 0;
        }

        // Make a copy of the connection vector as some connections may be removed during the course
        // of this loop (especially when one-shot sensor events are present in the sensor_event
        // buffer). Promote all connections to StrongPointers before the lock is acquired. If the
        // destructor of the sp gets called when the lock is acquired, it may result in a deadlock
        // as ~SensorEventConnection() needs to acquire mLock again for cleanup. So copy all the
        // strongPointers to a vector before the lock is acquired.
        SortedVector< sp<SensorEventConnection> > activeConnections;
        populateActiveConnections(&activeConnections);

        Mutex::Autolock _l(mLock);
        // Poll has returned. Hold a wakelock if one of the events is from a wake up sensor. The
        // rest of this loop is under a critical section protected by mLock. Acquiring a wakeLock,
        // sending events to clients (incrementing SensorEventConnection::mWakeLockRefCount) should
        // not be interleaved with decrementing SensorEventConnection::mWakeLockRefCount and
        // releasing the wakelock.
        bool bufferHasWakeUpEvent = false;
        for (int i = 0; i < count; i++) {
            if (isWakeUpSensorEvent(mSensorEventBuffer[i])) {
                bufferHasWakeUpEvent = true;
                break;
            }
        }

        if (bufferHasWakeUpEvent && !mWakeLockAcquired) {
            setWakeLockAcquiredLocked(true);
        }
        recordLastValueLocked(mSensorEventBuffer, count);

        // handle virtual sensors
        if (count && vcount) {
            sensors_event_t const * const event = mSensorEventBuffer;
            if (!mActiveVirtualSensors.empty()) {
                size_t k = 0;
                SensorFusion& fusion(SensorFusion::getInstance());
                if (fusion.isEnabled()) {
                    for (size_t i=0 ; i<size_t(count) ; i++) {
                        fusion.process(event[i]);
                    }
                }
                for (size_t i=0 ; i<size_t(count) && k<minBufferSize ; i++) {
                    for (int handle : mActiveVirtualSensors) {
                        if (count + k >= minBufferSize) {
                            ALOGE("buffer too small to hold all events: "
                                    "count=%zd, k=%zu, size=%zu",
                                    count, k, minBufferSize);
                            break;
                        }
                        sensors_event_t out;
                        sp<SensorInterface> si = mSensors.getInterface(handle);
                        if (si == nullptr) {
                            ALOGE("handle %d is not an valid virtual sensor", handle);
                            continue;
                        }

                        if (si->process(&out, event[i])) {
                            mSensorEventBuffer[count + k] = out;
                            k++;
                        }
                    }
                }
                if (k) {
                    // record the last synthesized values
                    recordLastValueLocked(&mSensorEventBuffer[count], k);
                    count += k;
                    // sort the buffer by time-stamps
                    sortEventBuffer(mSensorEventBuffer, count);
                }
            }
        }

        // handle backward compatibility for RotationVector sensor
        if (halVersion < SENSORS_DEVICE_API_VERSION_1_0) {
            for (int i = 0; i < count; i++) {
                if (mSensorEventBuffer[i].type == SENSOR_TYPE_ROTATION_VECTOR) {
                    // All the 4 components of the quaternion should be available
                    // No heading accuracy. Set it to -1
                    mSensorEventBuffer[i].data[4] = -1;
                }
            }
        }

        for (int i = 0; i < count; ++i) {
            // Map flush_complete_events in the buffer to SensorEventConnections which called flush
            // on the hardware sensor. mapFlushEventsToConnections[i] will be the
            // SensorEventConnection mapped to the corresponding flush_complete_event in
            // mSensorEventBuffer[i] if such a mapping exists (NULL otherwise).
            mMapFlushEventsToConnections[i] = NULL;
            if (mSensorEventBuffer[i].type == SENSOR_TYPE_META_DATA) {
                const int sensor_handle = mSensorEventBuffer[i].meta_data.sensor;
                SensorRecord* rec = mActiveSensors.valueFor(sensor_handle);
                if (rec != NULL) {
                    mMapFlushEventsToConnections[i] = rec->getFirstPendingFlushConnection();
                    rec->removeFirstPendingFlushConnection();
                }
            }

            // handle dynamic sensor meta events, process registration and unregistration of dynamic
            // sensor based on content of event.
            if (mSensorEventBuffer[i].type == SENSOR_TYPE_DYNAMIC_SENSOR_META) {
                if (mSensorEventBuffer[i].dynamic_sensor_meta.connected) {
                    int handle = mSensorEventBuffer[i].dynamic_sensor_meta.handle;
                    const sensor_t& dynamicSensor =
                            *(mSensorEventBuffer[i].dynamic_sensor_meta.sensor);
                    ALOGI("Dynamic sensor handle 0x%x connected, type %d, name %s",
                          handle, dynamicSensor.type, dynamicSensor.name);

                    if (mSensors.isNewHandle(handle)) {
                        const auto& uuid = mSensorEventBuffer[i].dynamic_sensor_meta.uuid;
                        sensor_t s = dynamicSensor;
                        // make sure the dynamic sensor flag is set
                        s.flags |= DYNAMIC_SENSOR_MASK;
                        // force the handle to be consistent
                        s.handle = handle;

                        SensorInterface *si = new HardwareSensor(s, uuid);

                        // This will release hold on dynamic sensor meta, so it should be called
                        // after Sensor object is created.
                        device.handleDynamicSensorConnection(handle, true /*connected*/);
                        registerDynamicSensorLocked(si);
                    } else {
                        ALOGE("Handle %d has been used, cannot use again before reboot.", handle);
                    }
                } else {
                    int handle = mSensorEventBuffer[i].dynamic_sensor_meta.handle;
                    ALOGI("Dynamic sensor handle 0x%x disconnected", handle);

                    device.handleDynamicSensorConnection(handle, false /*connected*/);
                    if (!unregisterDynamicSensorLocked(handle)) {
                        ALOGE("Dynamic sensor release error.");
                    }

                    size_t numConnections = activeConnections.size();
                    for (size_t i=0 ; i < numConnections; ++i) {
                        if (activeConnections[i] != NULL) {
                            activeConnections[i]->removeSensor(handle);
                        }
                    }
                }
            }
        }


        // Send our events to clients. Check the state of wake lock for each client and release the
        // lock if none of the clients need it.
        bool needsWakeLock = false;
        size_t numConnections = activeConnections.size();
        for (size_t i=0 ; i < numConnections; ++i) {
            if (activeConnections[i] != 0) {
                activeConnections[i]->sendEvents(mSensorEventBuffer, count, mSensorEventScratch,
                        mMapFlushEventsToConnections);
                needsWakeLock |= activeConnections[i]->needsWakeLock();
                // If the connection has one-shot sensors, it may be cleaned up after first trigger.
                // Early check for one-shot sensors.
                if (activeConnections[i]->hasOneShotSensors()) {
                    cleanupAutoDisabledSensorLocked(activeConnections[i], mSensorEventBuffer,
                            count);
                }
            }
        }

        if (mWakeLockAcquired && !needsWakeLock) {
            setWakeLockAcquiredLocked(false);
        }
    } while (!Thread::exitPending());

    ALOGW("Exiting SensorService::threadLoop => aborting...");
    abort();
    return false;
}

sp<Looper> SensorService::getLooper() const {
    return mLooper;
}

void SensorService::resetAllWakeLockRefCounts() {
    SortedVector< sp<SensorEventConnection> > activeConnections;
    populateActiveConnections(&activeConnections);
    {
        Mutex::Autolock _l(mLock);
        for (size_t i=0 ; i < activeConnections.size(); ++i) {
            if (activeConnections[i] != 0) {
                activeConnections[i]->resetWakeLockRefCount();
            }
        }
        setWakeLockAcquiredLocked(false);
    }
}

void SensorService::setWakeLockAcquiredLocked(bool acquire) {
    if (acquire) {
        if (!mWakeLockAcquired) {
            acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_NAME);
            mWakeLockAcquired = true;
        }
        mLooper->wake();
    } else {
        if (mWakeLockAcquired) {
            release_wake_lock(WAKE_LOCK_NAME);
            mWakeLockAcquired = false;
        }
    }
}

bool SensorService::isWakeLockAcquired() {
    Mutex::Autolock _l(mLock);
    return mWakeLockAcquired;
}

bool SensorService::SensorEventAckReceiver::threadLoop() {
    ALOGD("new thread SensorEventAckReceiver");
    sp<Looper> looper = mService->getLooper();
    do {
        bool wakeLockAcquired = mService->isWakeLockAcquired();
        int timeout = -1;
        if (wakeLockAcquired) timeout = 5000;
        int ret = looper->pollOnce(timeout);
        if (ret == ALOOPER_POLL_TIMEOUT) {
           mService->resetAllWakeLockRefCounts();
        }
    } while(!Thread::exitPending());
    return false;
}

void SensorService::recordLastValueLocked(
        const sensors_event_t* buffer, size_t count) {
    for (size_t i = 0; i < count; i++) {
        if (buffer[i].type == SENSOR_TYPE_META_DATA ||
            buffer[i].type == SENSOR_TYPE_DYNAMIC_SENSOR_META ||
            buffer[i].type == SENSOR_TYPE_ADDITIONAL_INFO) {
            continue;
        }

        auto logger = mRecentEvent.find(buffer[i].sensor);
        if (logger != mRecentEvent.end()) {
            logger->second->addEvent(buffer[i]);
        }
    }
}

void SensorService::sortEventBuffer(sensors_event_t* buffer, size_t count) {
    struct compar {
        static int cmp(void const* lhs, void const* rhs) {
            sensors_event_t const* l = static_cast<sensors_event_t const*>(lhs);
            sensors_event_t const* r = static_cast<sensors_event_t const*>(rhs);
            return l->timestamp - r->timestamp;
        }
    };
    qsort(buffer, count, sizeof(sensors_event_t), compar::cmp);
}

String8 SensorService::getSensorName(int handle) const {
    return mSensors.getName(handle);
}

bool SensorService::isVirtualSensor(int handle) const {
    sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
    return sensor != nullptr && sensor->isVirtual();
}

bool SensorService::isWakeUpSensorEvent(const sensors_event_t& event) const {
    int handle = event.sensor;
    if (event.type == SENSOR_TYPE_META_DATA) {
        handle = event.meta_data.sensor;
    }
    sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
    return sensor != nullptr && sensor->getSensor().isWakeUpSensor();
}

int32_t SensorService::getIdFromUuid(const Sensor::uuid_t &uuid) const {
    if ((uuid.i64[0] == 0) && (uuid.i64[1] == 0)) {
        // UUID is not supported for this device.
        return 0;
    }
    if ((uuid.i64[0] == INT64_C(~0)) && (uuid.i64[1] == INT64_C(~0))) {
        // This sensor can be uniquely identified in the system by
        // the combination of its type and name.
        return -1;
    }

    // We have a dynamic sensor.

    if (!sHmacGlobalKeyIsValid) {
        // Rather than risk exposing UUIDs, we cripple dynamic sensors.
        ALOGW("HMAC key failure; dynamic sensor getId() will be wrong.");
        return 0;
    }

    // We want each app author/publisher to get a different ID, so that the
    // same dynamic sensor cannot be tracked across apps by multiple
    // authors/publishers.  So we use both our UUID and our User ID.
    // Note potential confusion:
    //     UUID => Universally Unique Identifier.
    //     UID  => User Identifier.
    // We refrain from using "uid" except as needed by API to try to
    // keep this distinction clear.

    auto appUserId = IPCThreadState::self()->getCallingUid();
    uint8_t uuidAndApp[sizeof(uuid) + sizeof(appUserId)];
    memcpy(uuidAndApp, &uuid, sizeof(uuid));
    memcpy(uuidAndApp + sizeof(uuid), &appUserId, sizeof(appUserId));

    // Now we use our key on our UUID/app combo to get the hash.
    uint8_t hash[EVP_MAX_MD_SIZE];
    unsigned int hashLen;
    if (HMAC(EVP_sha256(),
             sHmacGlobalKey, sizeof(sHmacGlobalKey),
             uuidAndApp, sizeof(uuidAndApp),
             hash, &hashLen) == nullptr) {
        // Rather than risk exposing UUIDs, we cripple dynamic sensors.
        ALOGW("HMAC failure; dynamic sensor getId() will be wrong.");
        return 0;
    }

    int32_t id = 0;
    if (hashLen < sizeof(id)) {
        // We never expect this case, but out of paranoia, we handle it.
        // Our 'id' length is already quite small, we don't want the
        // effective length of it to be even smaller.
        // Rather than risk exposing UUIDs, we cripple dynamic sensors.
        ALOGW("HMAC insufficient; dynamic sensor getId() will be wrong.");
        return 0;
    }

    // This is almost certainly less than all of 'hash', but it's as secure
    // as we can be with our current 'id' length.
    memcpy(&id, hash, sizeof(id));

    // Note at the beginning of the function that we return the values of
    // 0 and -1 to represent special cases.  As a result, we can't return
    // those as dynamic sensor IDs.  If we happened to hash to one of those
    // values, we change 'id' so we report as a dynamic sensor, and not as
    // one of those special cases.
    if (id == -1) {
        id = -2;
    } else if (id == 0) {
        id = 1;
    }
    return id;
}

void SensorService::makeUuidsIntoIdsForSensorList(Vector<Sensor> &sensorList) const {
    for (auto &sensor : sensorList) {
        int32_t id = getIdFromUuid(sensor.getUuid());
        sensor.setId(id);
    }
}

Vector<Sensor> SensorService::getSensorList(const String16& /* opPackageName */) {
    char value[PROPERTY_VALUE_MAX];
    property_get("debug.sensors", value, "0");
    const Vector<Sensor>& initialSensorList = (atoi(value)) ?
            mSensors.getUserDebugSensors() : mSensors.getUserSensors();
    Vector<Sensor> accessibleSensorList;
    for (size_t i = 0; i < initialSensorList.size(); i++) {
        Sensor sensor = initialSensorList[i];
        accessibleSensorList.add(sensor);
    }
    makeUuidsIntoIdsForSensorList(accessibleSensorList);
    return accessibleSensorList;
}

Vector<Sensor> SensorService::getDynamicSensorList(const String16& opPackageName) {
    Vector<Sensor> accessibleSensorList;
    mSensors.forEachSensor(
            [&opPackageName, &accessibleSensorList] (const Sensor& sensor) -> bool {
                if (sensor.isDynamicSensor()) {
                    if (canAccessSensor(sensor, "getDynamicSensorList", opPackageName)) {
                        accessibleSensorList.add(sensor);
                    } else {
                        ALOGI("Skipped sensor %s because it requires permission %s and app op %" PRId32,
                              sensor.getName().string(),
                              sensor.getRequiredPermission().string(),
                              sensor.getRequiredAppOp());
                    }
                }
                return true;
            });
    makeUuidsIntoIdsForSensorList(accessibleSensorList);
    return accessibleSensorList;
}

sp<ISensorEventConnection> SensorService::createSensorEventConnection(const String8& packageName,
        int requestedMode, const String16& opPackageName) {
    // Only 2 modes supported for a SensorEventConnection ... NORMAL and DATA_INJECTION.
    if (requestedMode != NORMAL && requestedMode != DATA_INJECTION) {
        return NULL;
    }

    Mutex::Autolock _l(mLock);
    // To create a client in DATA_INJECTION mode to inject data, SensorService should already be
    // operating in DI mode.
    if (requestedMode == DATA_INJECTION) {
        if (mCurrentOperatingMode != DATA_INJECTION) return NULL;
        if (!isWhiteListedPackage(packageName)) return NULL;
    }

    uid_t uid = IPCThreadState::self()->getCallingUid();
    pid_t pid = IPCThreadState::self()->getCallingPid();

    String8 connPackageName =
            (packageName == "") ? String8::format("unknown_package_pid_%d", pid) : packageName;
    String16 connOpPackageName =
            (opPackageName == String16("")) ? String16(connPackageName) : opPackageName;
    sp<SensorEventConnection> result(new SensorEventConnection(this, uid, connPackageName,
            requestedMode == DATA_INJECTION, connOpPackageName));
    if (requestedMode == DATA_INJECTION) {
        if (mActiveConnections.indexOf(result) < 0) {
            mActiveConnections.add(result);
        }
        // Add the associated file descriptor to the Looper for polling whenever there is data to
        // be injected.
        result->updateLooperRegistration(mLooper);
    }
    return result;
}

int SensorService::isDataInjectionEnabled() {
    Mutex::Autolock _l(mLock);
    return (mCurrentOperatingMode == DATA_INJECTION);
}

sp<ISensorEventConnection> SensorService::createSensorDirectConnection(
        const String16& opPackageName, uint32_t size, int32_t type, int32_t format,
        const native_handle *resource) {
    Mutex::Autolock _l(mLock);

    struct sensors_direct_mem_t mem = {
        .type = type,
        .format = format,
        .size = size,
        .handle = resource,
    };
    uid_t uid = IPCThreadState::self()->getCallingUid();

    if (mem.handle == nullptr) {
        ALOGE("Failed to clone resource handle");
        return nullptr;
    }

    // check format
    if (format != SENSOR_DIRECT_FMT_SENSORS_EVENT) {
        ALOGE("Direct channel format %d is unsupported!", format);
        return nullptr;
    }

    // check for duplication
    for (auto &i : mDirectConnections) {
        sp<SensorDirectConnection> connection(i.promote());
        if (connection != nullptr && connection->isEquivalent(&mem)) {
            ALOGE("Duplicate create channel request for the same share memory");
            return nullptr;
        }
    }

    // check specific to memory type
    switch(type) {
        case SENSOR_DIRECT_MEM_TYPE_ASHMEM: { // channel backed by ashmem
            int fd = resource->data[0];
            int size2 = ashmem_get_size_region(fd);
            // check size consistency
            if (size2 < static_cast<int>(size)) {
                ALOGE("Ashmem direct channel size %" PRIu32 " greater than shared memory size %d",
                      size, size2);
                return nullptr;
            }
            break;
        }
        case SENSOR_DIRECT_MEM_TYPE_GRALLOC:
            // no specific checks for gralloc
            break;
        default:
            ALOGE("Unknown direct connection memory type %d", type);
            return nullptr;
    }

    native_handle_t *clone = native_handle_clone(resource);
    if (!clone) {
        return nullptr;
    }

    SensorDirectConnection* conn = nullptr;
    SensorDevice& dev(SensorDevice::getInstance());
    int channelHandle = dev.registerDirectChannel(&mem);

    if (channelHandle <= 0) {
        ALOGE("SensorDevice::registerDirectChannel returns %d", channelHandle);
    } else {
        mem.handle = clone;
        conn = new SensorDirectConnection(this, uid, &mem, channelHandle, opPackageName);
    }

    if (conn == nullptr) {
        native_handle_close(clone);
        native_handle_delete(clone);
    } else {
        // add to list of direct connections
        // sensor service should never hold pointer or sp of SensorDirectConnection object.
        mDirectConnections.add(wp<SensorDirectConnection>(conn));
    }
    return conn;
}

int SensorService::setOperationParameter(
            int32_t handle, int32_t type,
            const Vector<float> &floats, const Vector<int32_t> &ints) {
    Mutex::Autolock _l(mLock);

    if (!checkCallingPermission(sLocationHardwarePermission, nullptr, nullptr)) {
        return PERMISSION_DENIED;
    }

    bool isFloat = true;
    bool isCustom = false;
    size_t expectSize = INT32_MAX;
    switch (type) {
        case AINFO_LOCAL_GEOMAGNETIC_FIELD:
            isFloat = true;
            expectSize = 3;
            break;
        case AINFO_LOCAL_GRAVITY:
            isFloat = true;
            expectSize = 1;
            break;
        case AINFO_DOCK_STATE:
        case AINFO_HIGH_PERFORMANCE_MODE:
        case AINFO_MAGNETIC_FIELD_CALIBRATION:
            isFloat = false;
            expectSize = 1;
            break;
        default:
            // CUSTOM events must only contain float data; it may have variable size
            if (type < AINFO_CUSTOM_START || type >= AINFO_DEBUGGING_START ||
                    ints.size() ||
                    sizeof(additional_info_event_t::data_float)/sizeof(float) < floats.size() ||
                    handle < 0) {
                return BAD_VALUE;
            }
            isFloat = true;
            isCustom = true;
            expectSize = floats.size();
            break;
    }

    if (!isCustom && handle != -1) {
        return BAD_VALUE;
    }

    // three events: first one is begin tag, last one is end tag, the one in the middle
    // is the payload.
    sensors_event_t event[3];
    int64_t timestamp = elapsedRealtimeNano();
    for (sensors_event_t* i = event; i < event + 3; i++) {
        *i = (sensors_event_t) {
            .version = sizeof(sensors_event_t),
            .sensor = handle,
            .type = SENSOR_TYPE_ADDITIONAL_INFO,
            .timestamp = timestamp++,
            .additional_info = (additional_info_event_t) {
                .serial = 0
            }
        };
    }

    event[0].additional_info.type = AINFO_BEGIN;
    event[1].additional_info.type = type;
    event[2].additional_info.type = AINFO_END;

    if (isFloat) {
        if (floats.size() != expectSize) {
            return BAD_VALUE;
        }
        for (size_t i = 0; i < expectSize; ++i) {
            event[1].additional_info.data_float[i] = floats[i];
        }
    } else {
        if (ints.size() != expectSize) {
            return BAD_VALUE;
        }
        for (size_t i = 0; i < expectSize; ++i) {
            event[1].additional_info.data_int32[i] = ints[i];
        }
    }

    SensorDevice& dev(SensorDevice::getInstance());
    for (sensors_event_t* i = event; i < event + 3; i++) {
        int ret = dev.injectSensorData(i);
        if (ret != NO_ERROR) {
            return ret;
        }
    }
    return NO_ERROR;
}

status_t SensorService::resetToNormalMode() {
    Mutex::Autolock _l(mLock);
    return resetToNormalModeLocked();
}

status_t SensorService::resetToNormalModeLocked() {
    SensorDevice& dev(SensorDevice::getInstance());
    status_t err = dev.setMode(NORMAL);
    if (err == NO_ERROR) {
        mCurrentOperatingMode = NORMAL;
        dev.enableAllSensors();
    }
    return err;
}

void SensorService::cleanupConnection(SensorEventConnection* c) {
    Mutex::Autolock _l(mLock);
    const wp<SensorEventConnection> connection(c);
    size_t size = mActiveSensors.size();
    ALOGD_IF(DEBUG_CONNECTIONS, "%zu active sensors", size);
    for (size_t i=0 ; i<size ; ) {
        int handle = mActiveSensors.keyAt(i);
        if (c->hasSensor(handle)) {
            ALOGD_IF(DEBUG_CONNECTIONS, "%zu: disabling handle=0x%08x", i, handle);
            sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
            if (sensor != nullptr) {
                sensor->activate(c, false);
            } else {
                ALOGE("sensor interface of handle=0x%08x is null!", handle);
            }
            c->removeSensor(handle);
        }
        SensorRecord* rec = mActiveSensors.valueAt(i);
        ALOGE_IF(!rec, "mActiveSensors[%zu] is null (handle=0x%08x)!", i, handle);
        ALOGD_IF(DEBUG_CONNECTIONS,
                "removing connection %p for sensor[%zu].handle=0x%08x",
                c, i, handle);

        if (rec && rec->removeConnection(connection)) {
            ALOGD_IF(DEBUG_CONNECTIONS, "... and it was the last connection");
            mActiveSensors.removeItemsAt(i, 1);
            mActiveVirtualSensors.erase(handle);
            delete rec;
            size--;
        } else {
            i++;
        }
    }
    c->updateLooperRegistration(mLooper);
    mActiveConnections.remove(connection);
    BatteryService::cleanup(c->getUid());
    if (c->needsWakeLock()) {
        checkWakeLockStateLocked();
    }

    SensorDevice& dev(SensorDevice::getInstance());
    dev.notifyConnectionDestroyed(c);
}

void SensorService::cleanupConnection(SensorDirectConnection* c) {
    Mutex::Autolock _l(mLock);

    SensorDevice& dev(SensorDevice::getInstance());
    dev.unregisterDirectChannel(c->getHalChannelHandle());
    mDirectConnections.remove(c);
}

sp<SensorInterface> SensorService::getSensorInterfaceFromHandle(int handle) const {
    return mSensors.getInterface(handle);
}

status_t SensorService::enable(const sp<SensorEventConnection>& connection,
        int handle, nsecs_t samplingPeriodNs, nsecs_t maxBatchReportLatencyNs, int reservedFlags,
        const String16& opPackageName) {
    if (mInitCheck != NO_ERROR)
        return mInitCheck;

    sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
    if (sensor == nullptr ||
        !canAccessSensor(sensor->getSensor(), "Tried enabling", opPackageName)) {
        return BAD_VALUE;
    }

    Mutex::Autolock _l(mLock);
    if (mCurrentOperatingMode != NORMAL
           && !isWhiteListedPackage(connection->getPackageName())) {
        return INVALID_OPERATION;
    }

    SensorRecord* rec = mActiveSensors.valueFor(handle);
    if (rec == 0) {
        rec = new SensorRecord(connection);
        mActiveSensors.add(handle, rec);
        if (sensor->isVirtual()) {
            mActiveVirtualSensors.emplace(handle);
        }
    } else {
        if (rec->addConnection(connection)) {
            // this sensor is already activated, but we are adding a connection that uses it.
            // Immediately send down the last known value of the requested sensor if it's not a
            // "continuous" sensor.
            if (sensor->getSensor().getReportingMode() == AREPORTING_MODE_ON_CHANGE) {
                // NOTE: The wake_up flag of this event may get set to
                // WAKE_UP_SENSOR_EVENT_NEEDS_ACK if this is a wake_up event.

                auto logger = mRecentEvent.find(handle);
                if (logger != mRecentEvent.end()) {
                    sensors_event_t event;
                    // It is unlikely that this buffer is empty as the sensor is already active.
                    // One possible corner case may be two applications activating an on-change
                    // sensor at the same time.
                    if(logger->second->populateLastEvent(&event)) {
                        event.sensor = handle;
                        if (event.version == sizeof(sensors_event_t)) {
                            if (isWakeUpSensorEvent(event) && !mWakeLockAcquired) {
                                setWakeLockAcquiredLocked(true);
                            }
                            connection->sendEvents(&event, 1, NULL);
                            if (!connection->needsWakeLock() && mWakeLockAcquired) {
                                checkWakeLockStateLocked();
                            }
                        }
                    }
                }
            }
        }
    }

    if (connection->addSensor(handle)) {
        BatteryService::enableSensor(connection->getUid(), handle);
        // the sensor was added (which means it wasn't already there)
        // so, see if this connection becomes active
        if (mActiveConnections.indexOf(connection) < 0) {
            mActiveConnections.add(connection);
        }
    } else {
        ALOGW("sensor %08x already enabled in connection %p (ignoring)",
            handle, connection.get());
    }

    // Check maximum delay for the sensor.
    nsecs_t maxDelayNs = sensor->getSensor().getMaxDelay() * 1000LL;
    if (maxDelayNs > 0 && (samplingPeriodNs > maxDelayNs)) {
        samplingPeriodNs = maxDelayNs;
    }

    nsecs_t minDelayNs = sensor->getSensor().getMinDelayNs();
    if (samplingPeriodNs < minDelayNs) {
        samplingPeriodNs = minDelayNs;
    }

    ALOGD_IF(DEBUG_CONNECTIONS, "Calling batch handle==%d flags=%d"
                                "rate=%" PRId64 " timeout== %" PRId64"",
             handle, reservedFlags, samplingPeriodNs, maxBatchReportLatencyNs);

    status_t err = sensor->batch(connection.get(), handle, 0, samplingPeriodNs,
                                 maxBatchReportLatencyNs);

    // Call flush() before calling activate() on the sensor. Wait for a first
    // flush complete event before sending events on this connection. Ignore
    // one-shot sensors which don't support flush(). Ignore on-change sensors
    // to maintain the on-change logic (any on-change events except the initial
    // one should be trigger by a change in value). Also if this sensor isn't
    // already active, don't call flush().
    if (err == NO_ERROR &&
            sensor->getSensor().getReportingMode() == AREPORTING_MODE_CONTINUOUS &&
            rec->getNumConnections() > 1) {
        connection->setFirstFlushPending(handle, true);
        status_t err_flush = sensor->flush(connection.get(), handle);
        // Flush may return error if the underlying h/w sensor uses an older HAL.
        if (err_flush == NO_ERROR) {
            rec->addPendingFlushConnection(connection.get());
        } else {
            connection->setFirstFlushPending(handle, false);
        }
    }

    if (err == NO_ERROR) {
        ALOGD_IF(DEBUG_CONNECTIONS, "Calling activate on %d", handle);
        err = sensor->activate(connection.get(), true);
    }

    if (err == NO_ERROR) {
        connection->updateLooperRegistration(mLooper);

        mLastNSensorRegistrations.editItemAt(mNextSensorRegIndex) =
                SensorRegistrationInfo(handle, connection->getPackageName(),
                                       samplingPeriodNs, maxBatchReportLatencyNs, true);
        mNextSensorRegIndex = (mNextSensorRegIndex + 1) % SENSOR_REGISTRATIONS_BUF_SIZE;
    }

    if (err != NO_ERROR) {
        // batch/activate has failed, reset our state.
        cleanupWithoutDisableLocked(connection, handle);
    }
    return err;
}

status_t SensorService::disable(const sp<SensorEventConnection>& connection, int handle) {
    if (mInitCheck != NO_ERROR)
        return mInitCheck;

    Mutex::Autolock _l(mLock);
    status_t err = cleanupWithoutDisableLocked(connection, handle);
    if (err == NO_ERROR) {
        sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
        err = sensor != nullptr ? sensor->activate(connection.get(), false) : status_t(BAD_VALUE);

    }
    if (err == NO_ERROR) {
        mLastNSensorRegistrations.editItemAt(mNextSensorRegIndex) =
                SensorRegistrationInfo(handle, connection->getPackageName(), 0, 0, false);
        mNextSensorRegIndex = (mNextSensorRegIndex + 1) % SENSOR_REGISTRATIONS_BUF_SIZE;
    }
    return err;
}

status_t SensorService::cleanupWithoutDisable(
        const sp<SensorEventConnection>& connection, int handle) {
    Mutex::Autolock _l(mLock);
    return cleanupWithoutDisableLocked(connection, handle);
}

status_t SensorService::cleanupWithoutDisableLocked(
        const sp<SensorEventConnection>& connection, int handle) {
    SensorRecord* rec = mActiveSensors.valueFor(handle);
    if (rec) {
        // see if this connection becomes inactive
        if (connection->removeSensor(handle)) {
            BatteryService::disableSensor(connection->getUid(), handle);
        }
        if (connection->hasAnySensor() == false) {
            connection->updateLooperRegistration(mLooper);
            mActiveConnections.remove(connection);
        }
        // see if this sensor becomes inactive
        if (rec->removeConnection(connection)) {
            mActiveSensors.removeItem(handle);
            mActiveVirtualSensors.erase(handle);
            delete rec;
        }
        return NO_ERROR;
    }
    return BAD_VALUE;
}

status_t SensorService::setEventRate(const sp<SensorEventConnection>& connection,
        int handle, nsecs_t ns, const String16& opPackageName) {
    if (mInitCheck != NO_ERROR)
        return mInitCheck;

    sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
    if (sensor == nullptr ||
        !canAccessSensor(sensor->getSensor(), "Tried configuring", opPackageName)) {
        return BAD_VALUE;
    }

    if (ns < 0)
        return BAD_VALUE;

    nsecs_t minDelayNs = sensor->getSensor().getMinDelayNs();
    if (ns < minDelayNs) {
        ns = minDelayNs;
    }

    return sensor->setDelay(connection.get(), handle, ns);
}

status_t SensorService::flushSensor(const sp<SensorEventConnection>& connection,
        const String16& opPackageName) {
    if (mInitCheck != NO_ERROR) return mInitCheck;
    SensorDevice& dev(SensorDevice::getInstance());
    const int halVersion = dev.getHalDeviceVersion();
    status_t err(NO_ERROR);
    Mutex::Autolock _l(mLock);
    // Loop through all sensors for this connection and call flush on each of them.
    for (size_t i = 0; i < connection->mSensorInfo.size(); ++i) {
        const int handle = connection->mSensorInfo.keyAt(i);
        sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
        if (sensor == nullptr) {
            continue;
        }
        if (sensor->getSensor().getReportingMode() == AREPORTING_MODE_ONE_SHOT) {
            ALOGE("flush called on a one-shot sensor");
            err = INVALID_OPERATION;
            continue;
        }
        if (halVersion <= SENSORS_DEVICE_API_VERSION_1_0 || isVirtualSensor(handle)) {
            // For older devices just increment pending flush count which will send a trivial
            // flush complete event.
            connection->incrementPendingFlushCount(handle);
        } else {
            if (!canAccessSensor(sensor->getSensor(), "Tried flushing", opPackageName)) {
                err = INVALID_OPERATION;
                continue;
            }
            status_t err_flush = sensor->flush(connection.get(), handle);
            if (err_flush == NO_ERROR) {
                SensorRecord* rec = mActiveSensors.valueFor(handle);
                if (rec != NULL) rec->addPendingFlushConnection(connection);
            }
            err = (err_flush != NO_ERROR) ? err_flush : err;
        }
    }
    return err;
}

bool SensorService::canAccessSensor(const Sensor& sensor, const char* operation,
        const String16& opPackageName) {
    const String8& requiredPermission = sensor.getRequiredPermission();

    if (requiredPermission.length() <= 0) {
        return true;
    }

    bool hasPermission = false;

    // Runtime permissions can't use the cache as they may change.
    if (sensor.isRequiredPermissionRuntime()) {
        hasPermission = checkPermission(String16(requiredPermission),
                IPCThreadState::self()->getCallingPid(), IPCThreadState::self()->getCallingUid());
    } else {
        hasPermission = PermissionCache::checkCallingPermission(String16(requiredPermission));
    }

    if (!hasPermission) {
        ALOGE("%s a sensor (%s) without holding its required permission: %s",
                operation, sensor.getName().string(), sensor.getRequiredPermission().string());
        return false;
    }

    const int32_t opCode = sensor.getRequiredAppOp();
    if (opCode >= 0) {
        AppOpsManager appOps;
        if (appOps.noteOp(opCode, IPCThreadState::self()->getCallingUid(), opPackageName)
                        != AppOpsManager::MODE_ALLOWED) {
            ALOGE("%s a sensor (%s) without enabled required app op: %d",
                    operation, sensor.getName().string(), opCode);
            return false;
        }
    }

    return true;
}

void SensorService::checkWakeLockState() {
    Mutex::Autolock _l(mLock);
    checkWakeLockStateLocked();
}

void SensorService::checkWakeLockStateLocked() {
    if (!mWakeLockAcquired) {
        return;
    }
    bool releaseLock = true;
    for (size_t i=0 ; i<mActiveConnections.size() ; i++) {
        sp<SensorEventConnection> connection(mActiveConnections[i].promote());
        if (connection != 0) {
            if (connection->needsWakeLock()) {
                releaseLock = false;
                break;
            }
        }
    }
    if (releaseLock) {
        setWakeLockAcquiredLocked(false);
    }
}

void SensorService::sendEventsFromCache(const sp<SensorEventConnection>& connection) {
    Mutex::Autolock _l(mLock);
    connection->writeToSocketFromCache();
    if (connection->needsWakeLock()) {
        setWakeLockAcquiredLocked(true);
    }
}

void SensorService::populateActiveConnections(
        SortedVector< sp<SensorEventConnection> >* activeConnections) {
    Mutex::Autolock _l(mLock);
    for (size_t i=0 ; i < mActiveConnections.size(); ++i) {
        sp<SensorEventConnection> connection(mActiveConnections[i].promote());
        if (connection != 0) {
            activeConnections->add(connection);
        }
    }
}

bool SensorService::isWhiteListedPackage(const String8& packageName) {
    return (packageName.contains(mWhiteListedPackage.string()));
}

bool SensorService::isOperationRestricted(const String16& opPackageName) {
    Mutex::Autolock _l(mLock);
    if (mCurrentOperatingMode != RESTRICTED) {
        String8 package(opPackageName);
        return !isWhiteListedPackage(package);
    }
    return false;
}

}; // namespace android