summaryrefslogtreecommitdiff
path: root/services/surfaceflinger/BufferLayer.cpp
blob: f8c53c338e9bda9f029acbdb6112d0cd6fcca87d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
/*
 * Copyright (C) 2017 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wconversion"

//#define LOG_NDEBUG 0
#undef LOG_TAG
#define LOG_TAG "BufferLayer"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS

#include "BufferLayer.h"

#include <compositionengine/CompositionEngine.h>
#include <compositionengine/LayerFECompositionState.h>
#include <compositionengine/OutputLayer.h>
#include <compositionengine/impl/OutputLayerCompositionState.h>
#include <cutils/compiler.h>
#include <cutils/native_handle.h>
#include <cutils/properties.h>
#include <gui/BufferItem.h>
#include <gui/BufferQueue.h>
#include <gui/GLConsumer.h>
#include <gui/LayerDebugInfo.h>
#include <gui/Surface.h>
#include <renderengine/RenderEngine.h>
#include <ui/DebugUtils.h>
#include <utils/Errors.h>
#include <utils/Log.h>
#include <utils/NativeHandle.h>
#include <utils/StopWatch.h>
#include <utils/Trace.h>

#include <cmath>
#include <cstdlib>
#include <mutex>
#include <sstream>

#include "Colorizer.h"
#include "DisplayDevice.h"
#include "FrameTracer/FrameTracer.h"
#include "LayerRejecter.h"
#include "TimeStats/TimeStats.h"

namespace android {

using gui::WindowInfo;

static constexpr float defaultMaxLuminance = 1000.0;

BufferLayer::BufferLayer(const LayerCreationArgs& args)
      : Layer(args),
        mTextureName(args.textureName),
        mCompositionState{mFlinger->getCompositionEngine().createLayerFECompositionState()} {
    ALOGV("Creating Layer %s", getDebugName());

    mPremultipliedAlpha = !(args.flags & ISurfaceComposerClient::eNonPremultiplied);

    mPotentialCursor = args.flags & ISurfaceComposerClient::eCursorWindow;
    mProtectedByApp = args.flags & ISurfaceComposerClient::eProtectedByApp;
}

BufferLayer::~BufferLayer() {
    if (!isClone()) {
        // The original layer and the clone layer share the same texture. Therefore, only one of
        // the layers, in this case the original layer, needs to handle the deletion. The original
        // layer and the clone should be removed at the same time so there shouldn't be any issue
        // with the clone layer trying to use the deleted texture.
        mFlinger->deleteTextureAsync(mTextureName);
    }
    const int32_t layerId = getSequence();
    mFlinger->mTimeStats->onDestroy(layerId);
    mFlinger->mFrameTracer->onDestroy(layerId);
}

void BufferLayer::useSurfaceDamage() {
    if (mFlinger->mForceFullDamage) {
        surfaceDamageRegion = Region::INVALID_REGION;
    } else {
        surfaceDamageRegion = mBufferInfo.mSurfaceDamage;
    }
}

void BufferLayer::useEmptyDamage() {
    surfaceDamageRegion.clear();
}

bool BufferLayer::isOpaque(const Layer::State& s) const {
    // if we don't have a buffer or sidebandStream yet, we're translucent regardless of the
    // layer's opaque flag.
    if ((mSidebandStream == nullptr) && (mBufferInfo.mBuffer == nullptr)) {
        return false;
    }

    // if the layer has the opaque flag, then we're always opaque,
    // otherwise we use the current buffer's format.
    return ((s.flags & layer_state_t::eLayerOpaque) != 0) || getOpacityForFormat(getPixelFormat());
}

bool BufferLayer::canReceiveInput() const {
    return !isHiddenByPolicy() && (mBufferInfo.mBuffer == nullptr || getAlpha() > 0.0f);
}

bool BufferLayer::isVisible() const {
    return !isHiddenByPolicy() && getAlpha() > 0.0f &&
            (mBufferInfo.mBuffer != nullptr || mSidebandStream != nullptr);
}

bool BufferLayer::isFixedSize() const {
    return getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE;
}

bool BufferLayer::usesSourceCrop() const {
    return true;
}

static constexpr mat4 inverseOrientation(uint32_t transform) {
    const mat4 flipH(-1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1);
    const mat4 flipV(1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1);
    const mat4 rot90(0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1);
    mat4 tr;

    if (transform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
        tr = tr * rot90;
    }
    if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_H) {
        tr = tr * flipH;
    }
    if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_V) {
        tr = tr * flipV;
    }
    return inverse(tr);
}

std::optional<compositionengine::LayerFE::LayerSettings> BufferLayer::prepareClientComposition(
        compositionengine::LayerFE::ClientCompositionTargetSettings& targetSettings) {
    ATRACE_CALL();

    std::optional<compositionengine::LayerFE::LayerSettings> result =
            Layer::prepareClientComposition(targetSettings);
    if (!result) {
        return result;
    }

    if (CC_UNLIKELY(mBufferInfo.mBuffer == 0) && mSidebandStream != nullptr) {
        // For surfaceview of tv sideband, there is no activeBuffer
        // in bufferqueue, we need return LayerSettings.
        return result;
    }
    const bool blackOutLayer = (isProtected() && !targetSettings.supportsProtectedContent) ||
            ((isSecure() || isProtected()) && !targetSettings.isSecure);
    const bool bufferCanBeUsedAsHwTexture =
            mBufferInfo.mBuffer->getUsage() & GraphicBuffer::USAGE_HW_TEXTURE;
    compositionengine::LayerFE::LayerSettings& layer = *result;
    if (blackOutLayer || !bufferCanBeUsedAsHwTexture) {
        ALOGE_IF(!bufferCanBeUsedAsHwTexture, "%s is blacked out as buffer is not gpu readable",
                 mName.c_str());
        prepareClearClientComposition(layer, true /* blackout */);
        return layer;
    }

    const State& s(getDrawingState());
    layer.source.buffer.buffer = mBufferInfo.mBuffer;
    layer.source.buffer.isOpaque = isOpaque(s);
    layer.source.buffer.fence = mBufferInfo.mFence;
    layer.source.buffer.textureName = mTextureName;
    layer.source.buffer.usePremultipliedAlpha = getPremultipledAlpha();
    layer.source.buffer.isY410BT2020 = isHdrY410();
    bool hasSmpte2086 = mBufferInfo.mHdrMetadata.validTypes & HdrMetadata::SMPTE2086;
    bool hasCta861_3 = mBufferInfo.mHdrMetadata.validTypes & HdrMetadata::CTA861_3;
    float maxLuminance = 0.f;
    if (hasSmpte2086 && hasCta861_3) {
        maxLuminance = std::min(mBufferInfo.mHdrMetadata.smpte2086.maxLuminance,
                                mBufferInfo.mHdrMetadata.cta8613.maxContentLightLevel);
    } else if (hasSmpte2086) {
        maxLuminance = mBufferInfo.mHdrMetadata.smpte2086.maxLuminance;
    } else if (hasCta861_3) {
        maxLuminance = mBufferInfo.mHdrMetadata.cta8613.maxContentLightLevel;
    } else {
        switch (layer.sourceDataspace & HAL_DATASPACE_TRANSFER_MASK) {
            case HAL_DATASPACE_TRANSFER_ST2084:
            case HAL_DATASPACE_TRANSFER_HLG:
                // Behavior-match previous releases for HDR content
                maxLuminance = defaultMaxLuminance;
                break;
        }
    }
    layer.source.buffer.maxLuminanceNits = maxLuminance;
    layer.frameNumber = mCurrentFrameNumber;
    layer.bufferId = mBufferInfo.mBuffer ? mBufferInfo.mBuffer->getId() : 0;

    const bool useFiltering =
            targetSettings.needsFiltering || mNeedsFiltering || bufferNeedsFiltering();

    // Query the texture matrix given our current filtering mode.
    float textureMatrix[16];
    getDrawingTransformMatrix(useFiltering, textureMatrix);

    if (getTransformToDisplayInverse()) {
        /*
         * the code below applies the primary display's inverse transform to
         * the texture transform
         */
        uint32_t transform = DisplayDevice::getPrimaryDisplayRotationFlags();
        mat4 tr = inverseOrientation(transform);

        /**
         * TODO(b/36727915): This is basically a hack.
         *
         * Ensure that regardless of the parent transformation,
         * this buffer is always transformed from native display
         * orientation to display orientation. For example, in the case
         * of a camera where the buffer remains in native orientation,
         * we want the pixels to always be upright.
         */
        sp<Layer> p = mDrawingParent.promote();
        if (p != nullptr) {
            const auto parentTransform = p->getTransform();
            tr = tr * inverseOrientation(parentTransform.getOrientation());
        }

        // and finally apply it to the original texture matrix
        const mat4 texTransform(mat4(static_cast<const float*>(textureMatrix)) * tr);
        memcpy(textureMatrix, texTransform.asArray(), sizeof(textureMatrix));
    }

    const Rect win{getBounds()};
    float bufferWidth = getBufferSize(s).getWidth();
    float bufferHeight = getBufferSize(s).getHeight();

    // BufferStateLayers can have a "buffer size" of [0, 0, -1, -1] when no display frame has
    // been set and there is no parent layer bounds. In that case, the scale is meaningless so
    // ignore them.
    if (!getBufferSize(s).isValid()) {
        bufferWidth = float(win.right) - float(win.left);
        bufferHeight = float(win.bottom) - float(win.top);
    }

    const float scaleHeight = (float(win.bottom) - float(win.top)) / bufferHeight;
    const float scaleWidth = (float(win.right) - float(win.left)) / bufferWidth;
    const float translateY = float(win.top) / bufferHeight;
    const float translateX = float(win.left) / bufferWidth;

    // Flip y-coordinates because GLConsumer expects OpenGL convention.
    mat4 tr = mat4::translate(vec4(.5, .5, 0, 1)) * mat4::scale(vec4(1, -1, 1, 1)) *
            mat4::translate(vec4(-.5, -.5, 0, 1)) *
            mat4::translate(vec4(translateX, translateY, 0, 1)) *
            mat4::scale(vec4(scaleWidth, scaleHeight, 1.0, 1.0));

    layer.source.buffer.useTextureFiltering = useFiltering;
    layer.source.buffer.textureTransform = mat4(static_cast<const float*>(textureMatrix)) * tr;

    return layer;
}

bool BufferLayer::isHdrY410() const {
    // pixel format is HDR Y410 masquerading as RGBA_1010102
    return (mBufferInfo.mDataspace == ui::Dataspace::BT2020_ITU_PQ &&
            mBufferInfo.mApi == NATIVE_WINDOW_API_MEDIA &&
            mBufferInfo.mPixelFormat == HAL_PIXEL_FORMAT_RGBA_1010102);
}

sp<compositionengine::LayerFE> BufferLayer::getCompositionEngineLayerFE() const {
    return asLayerFE();
}

compositionengine::LayerFECompositionState* BufferLayer::editCompositionState() {
    return mCompositionState.get();
}

const compositionengine::LayerFECompositionState* BufferLayer::getCompositionState() const {
    return mCompositionState.get();
}

void BufferLayer::preparePerFrameCompositionState() {
    Layer::preparePerFrameCompositionState();

    // Sideband layers
    auto* compositionState = editCompositionState();
    if (compositionState->sidebandStream.get() && !compositionState->sidebandStreamHasFrame) {
        compositionState->compositionType =
                aidl::android::hardware::graphics::composer3::Composition::SIDEBAND;
        return;
    } else if ((mDrawingState.flags & layer_state_t::eLayerIsDisplayDecoration) != 0) {
        compositionState->compositionType =
                aidl::android::hardware::graphics::composer3::Composition::DISPLAY_DECORATION;
    } else {
        // Normal buffer layers
        compositionState->hdrMetadata = mBufferInfo.mHdrMetadata;
        compositionState->compositionType = mPotentialCursor
                ? aidl::android::hardware::graphics::composer3::Composition::CURSOR
                : aidl::android::hardware::graphics::composer3::Composition::DEVICE;
    }

    compositionState->buffer = getBuffer();
    compositionState->bufferSlot = (mBufferInfo.mBufferSlot == BufferQueue::INVALID_BUFFER_SLOT)
            ? 0
            : mBufferInfo.mBufferSlot;
    compositionState->acquireFence = mBufferInfo.mFence;
    compositionState->frameNumber = mBufferInfo.mFrameNumber;
    compositionState->sidebandStreamHasFrame = false;
}

bool BufferLayer::onPreComposition(nsecs_t) {
    return hasReadyFrame();
}
namespace {
TimeStats::SetFrameRateVote frameRateToSetFrameRateVotePayload(Layer::FrameRate frameRate) {
    using FrameRateCompatibility = TimeStats::SetFrameRateVote::FrameRateCompatibility;
    using Seamlessness = TimeStats::SetFrameRateVote::Seamlessness;
    const auto frameRateCompatibility = [frameRate] {
        switch (frameRate.type) {
            case Layer::FrameRateCompatibility::Default:
                return FrameRateCompatibility::Default;
            case Layer::FrameRateCompatibility::ExactOrMultiple:
                return FrameRateCompatibility::ExactOrMultiple;
            default:
                return FrameRateCompatibility::Undefined;
        }
    }();

    const auto seamlessness = [frameRate] {
        switch (frameRate.seamlessness) {
            case scheduler::Seamlessness::OnlySeamless:
                return Seamlessness::ShouldBeSeamless;
            case scheduler::Seamlessness::SeamedAndSeamless:
                return Seamlessness::NotRequired;
            default:
                return Seamlessness::Undefined;
        }
    }();

    return TimeStats::SetFrameRateVote{.frameRate = frameRate.rate.getValue(),
                                       .frameRateCompatibility = frameRateCompatibility,
                                       .seamlessness = seamlessness};
}
} // namespace

void BufferLayer::onPostComposition(const DisplayDevice* display,
                                    const std::shared_ptr<FenceTime>& glDoneFence,
                                    const std::shared_ptr<FenceTime>& presentFence,
                                    const CompositorTiming& compositorTiming) {
    // mFrameLatencyNeeded is true when a new frame was latched for the
    // composition.
    if (!mBufferInfo.mFrameLatencyNeeded) return;

    mAlreadyDisplayedThisCompose = false;

    // Update mFrameEventHistory.
    finalizeFrameEventHistory(glDoneFence, compositorTiming);

    // Update mFrameTracker.
    nsecs_t desiredPresentTime = mBufferInfo.mDesiredPresentTime;
    mFrameTracker.setDesiredPresentTime(desiredPresentTime);

    const int32_t layerId = getSequence();
    mFlinger->mTimeStats->setDesiredTime(layerId, mCurrentFrameNumber, desiredPresentTime);

    const auto outputLayer = findOutputLayerForDisplay(display);
    if (outputLayer && outputLayer->requiresClientComposition()) {
        nsecs_t clientCompositionTimestamp = outputLayer->getState().clientCompositionTimestamp;
        mFlinger->mFrameTracer->traceTimestamp(layerId, getCurrentBufferId(), mCurrentFrameNumber,
                                               clientCompositionTimestamp,
                                               FrameTracer::FrameEvent::FALLBACK_COMPOSITION);
        // Update the SurfaceFrames in the drawing state
        if (mDrawingState.bufferSurfaceFrameTX) {
            mDrawingState.bufferSurfaceFrameTX->setGpuComposition();
        }
        for (auto& [token, surfaceFrame] : mDrawingState.bufferlessSurfaceFramesTX) {
            surfaceFrame->setGpuComposition();
        }
    }

    std::shared_ptr<FenceTime> frameReadyFence = mBufferInfo.mFenceTime;
    if (frameReadyFence->isValid()) {
        mFrameTracker.setFrameReadyFence(std::move(frameReadyFence));
    } else {
        // There was no fence for this frame, so assume that it was ready
        // to be presented at the desired present time.
        mFrameTracker.setFrameReadyTime(desiredPresentTime);
    }

    if (display) {
        const Fps refreshRate = display->refreshRateConfigs().getActiveMode()->getFps();
        const std::optional<Fps> renderRate =
                mFlinger->mScheduler->getFrameRateOverride(getOwnerUid());

        const auto vote = frameRateToSetFrameRateVotePayload(mDrawingState.frameRate);
        const auto gameMode = getGameMode();

        if (presentFence->isValid()) {
            mFlinger->mTimeStats->setPresentFence(layerId, mCurrentFrameNumber, presentFence,
                                                  refreshRate, renderRate, vote, gameMode);
            mFlinger->mFrameTracer->traceFence(layerId, getCurrentBufferId(), mCurrentFrameNumber,
                                               presentFence,
                                               FrameTracer::FrameEvent::PRESENT_FENCE);
            mFrameTracker.setActualPresentFence(std::shared_ptr<FenceTime>(presentFence));
        } else if (const auto displayId = PhysicalDisplayId::tryCast(display->getId());
                   displayId && mFlinger->getHwComposer().isConnected(*displayId)) {
            // The HWC doesn't support present fences, so use the refresh
            // timestamp instead.
            const nsecs_t actualPresentTime = display->getRefreshTimestamp();
            mFlinger->mTimeStats->setPresentTime(layerId, mCurrentFrameNumber, actualPresentTime,
                                                 refreshRate, renderRate, vote, gameMode);
            mFlinger->mFrameTracer->traceTimestamp(layerId, getCurrentBufferId(),
                                                   mCurrentFrameNumber, actualPresentTime,
                                                   FrameTracer::FrameEvent::PRESENT_FENCE);
            mFrameTracker.setActualPresentTime(actualPresentTime);
        }
    }

    mFrameTracker.advanceFrame();
    mBufferInfo.mFrameLatencyNeeded = false;
}

void BufferLayer::gatherBufferInfo() {
    mBufferInfo.mPixelFormat =
            !mBufferInfo.mBuffer ? PIXEL_FORMAT_NONE : mBufferInfo.mBuffer->getPixelFormat();
    mBufferInfo.mFrameLatencyNeeded = true;
}

bool BufferLayer::shouldPresentNow(nsecs_t expectedPresentTime) const {
    // If this is not a valid vsync for the layer's uid, return and try again later
    const bool isVsyncValidForUid =
            mFlinger->mScheduler->isVsyncValid(expectedPresentTime, mOwnerUid);
    if (!isVsyncValidForUid) {
        ATRACE_NAME("!isVsyncValidForUid");
        return false;
    }

    // AutoRefresh layers and sideband streams should always be presented
    if (getSidebandStreamChanged() || getAutoRefresh()) {
        return true;
    }

    // If this layer doesn't have a frame is shouldn't be presented
    if (!hasFrameUpdate()) {
        return false;
    }

    // Defer to the derived class to decide whether the next buffer is due for
    // presentation.
    return isBufferDue(expectedPresentTime);
}

bool BufferLayer::latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime,
                              nsecs_t expectedPresentTime) {
    ATRACE_CALL();

    bool refreshRequired = latchSidebandStream(recomputeVisibleRegions);

    if (refreshRequired) {
        return refreshRequired;
    }

    // If the head buffer's acquire fence hasn't signaled yet, return and
    // try again later
    if (!fenceHasSignaled()) {
        ATRACE_NAME("!fenceHasSignaled()");
        mFlinger->onLayerUpdate();
        return false;
    }

    // Capture the old state of the layer for comparisons later
    const State& s(getDrawingState());
    const bool oldOpacity = isOpaque(s);

    BufferInfo oldBufferInfo = mBufferInfo;

    status_t err = updateTexImage(recomputeVisibleRegions, latchTime, expectedPresentTime);
    if (err != NO_ERROR) {
        return false;
    }

    err = updateActiveBuffer();
    if (err != NO_ERROR) {
        return false;
    }

    err = updateFrameNumber();
    if (err != NO_ERROR) {
        return false;
    }

    gatherBufferInfo();

    if (oldBufferInfo.mBuffer == nullptr) {
        // the first time we receive a buffer, we need to trigger a
        // geometry invalidation.
        recomputeVisibleRegions = true;
    }

    if ((mBufferInfo.mCrop != oldBufferInfo.mCrop) ||
        (mBufferInfo.mTransform != oldBufferInfo.mTransform) ||
        (mBufferInfo.mScaleMode != oldBufferInfo.mScaleMode) ||
        (mBufferInfo.mTransformToDisplayInverse != oldBufferInfo.mTransformToDisplayInverse)) {
        recomputeVisibleRegions = true;
    }

    if (oldBufferInfo.mBuffer != nullptr) {
        uint32_t bufWidth = mBufferInfo.mBuffer->getWidth();
        uint32_t bufHeight = mBufferInfo.mBuffer->getHeight();
        if (bufWidth != oldBufferInfo.mBuffer->getWidth() ||
            bufHeight != oldBufferInfo.mBuffer->getHeight()) {
            recomputeVisibleRegions = true;
        }
    }

    if (oldOpacity != isOpaque(s)) {
        recomputeVisibleRegions = true;
    }

    return true;
}

bool BufferLayer::hasReadyFrame() const {
    return hasFrameUpdate() || getSidebandStreamChanged() || getAutoRefresh();
}

uint32_t BufferLayer::getEffectiveScalingMode() const {
    return mBufferInfo.mScaleMode;
}

bool BufferLayer::isProtected() const {
    return (mBufferInfo.mBuffer != nullptr) &&
            (mBufferInfo.mBuffer->getUsage() & GRALLOC_USAGE_PROTECTED);
}

// As documented in libhardware header, formats in the range
// 0x100 - 0x1FF are specific to the HAL implementation, and
// are known to have no alpha channel
// TODO: move definition for device-specific range into
// hardware.h, instead of using hard-coded values here.
#define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF)

bool BufferLayer::getOpacityForFormat(PixelFormat format) {
    if (HARDWARE_IS_DEVICE_FORMAT(format)) {
        return true;
    }
    switch (format) {
        case PIXEL_FORMAT_RGBA_8888:
        case PIXEL_FORMAT_BGRA_8888:
        case PIXEL_FORMAT_RGBA_FP16:
        case PIXEL_FORMAT_RGBA_1010102:
        case PIXEL_FORMAT_R_8:
            return false;
    }
    // in all other case, we have no blending (also for unknown formats)
    return true;
}

bool BufferLayer::needsFiltering(const DisplayDevice* display) const {
    const auto outputLayer = findOutputLayerForDisplay(display);
    if (outputLayer == nullptr) {
        return false;
    }

    // We need filtering if the sourceCrop rectangle size does not match the
    // displayframe rectangle size (not a 1:1 render)
    const auto& compositionState = outputLayer->getState();
    const auto displayFrame = compositionState.displayFrame;
    const auto sourceCrop = compositionState.sourceCrop;
    return sourceCrop.getHeight() != displayFrame.getHeight() ||
            sourceCrop.getWidth() != displayFrame.getWidth();
}

bool BufferLayer::needsFilteringForScreenshots(const DisplayDevice* display,
                                               const ui::Transform& inverseParentTransform) const {
    const auto outputLayer = findOutputLayerForDisplay(display);
    if (outputLayer == nullptr) {
        return false;
    }

    // We need filtering if the sourceCrop rectangle size does not match the
    // viewport rectangle size (not a 1:1 render)
    const auto& compositionState = outputLayer->getState();
    const ui::Transform& displayTransform = display->getTransform();
    const ui::Transform inverseTransform = inverseParentTransform * displayTransform.inverse();
    // Undo the transformation of the displayFrame so that we're back into
    // layer-stack space.
    const Rect frame = inverseTransform.transform(compositionState.displayFrame);
    const FloatRect sourceCrop = compositionState.sourceCrop;

    int32_t frameHeight = frame.getHeight();
    int32_t frameWidth = frame.getWidth();
    // If the display transform had a rotational component then undo the
    // rotation so that the orientation matches the source crop.
    if (displayTransform.getOrientation() & ui::Transform::ROT_90) {
        std::swap(frameHeight, frameWidth);
    }
    return sourceCrop.getHeight() != frameHeight || sourceCrop.getWidth() != frameWidth;
}

Rect BufferLayer::getBufferSize(const State& s) const {
    // If we have a sideband stream, or we are scaling the buffer then return the layer size since
    // we cannot determine the buffer size.
    if ((s.sidebandStream != nullptr) ||
        (getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE)) {
        return Rect(getActiveWidth(s), getActiveHeight(s));
    }

    if (mBufferInfo.mBuffer == nullptr) {
        return Rect::INVALID_RECT;
    }

    uint32_t bufWidth = mBufferInfo.mBuffer->getWidth();
    uint32_t bufHeight = mBufferInfo.mBuffer->getHeight();

    // Undo any transformations on the buffer and return the result.
    if (mBufferInfo.mTransform & ui::Transform::ROT_90) {
        std::swap(bufWidth, bufHeight);
    }

    if (getTransformToDisplayInverse()) {
        uint32_t invTransform = DisplayDevice::getPrimaryDisplayRotationFlags();
        if (invTransform & ui::Transform::ROT_90) {
            std::swap(bufWidth, bufHeight);
        }
    }

    return Rect(bufWidth, bufHeight);
}

FloatRect BufferLayer::computeSourceBounds(const FloatRect& parentBounds) const {
    const State& s(getDrawingState());

    // If we have a sideband stream, or we are scaling the buffer then return the layer size since
    // we cannot determine the buffer size.
    if ((s.sidebandStream != nullptr) ||
        (getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE)) {
        return FloatRect(0, 0, getActiveWidth(s), getActiveHeight(s));
    }

    if (mBufferInfo.mBuffer == nullptr) {
        return parentBounds;
    }

    uint32_t bufWidth = mBufferInfo.mBuffer->getWidth();
    uint32_t bufHeight = mBufferInfo.mBuffer->getHeight();

    // Undo any transformations on the buffer and return the result.
    if (mBufferInfo.mTransform & ui::Transform::ROT_90) {
        std::swap(bufWidth, bufHeight);
    }

    if (getTransformToDisplayInverse()) {
        uint32_t invTransform = DisplayDevice::getPrimaryDisplayRotationFlags();
        if (invTransform & ui::Transform::ROT_90) {
            std::swap(bufWidth, bufHeight);
        }
    }

    return FloatRect(0, 0, bufWidth, bufHeight);
}

void BufferLayer::latchAndReleaseBuffer() {
    if (hasReadyFrame()) {
        bool ignored = false;
        latchBuffer(ignored, systemTime(), 0 /* expectedPresentTime */);
    }
    releasePendingBuffer(systemTime());
}

PixelFormat BufferLayer::getPixelFormat() const {
    return mBufferInfo.mPixelFormat;
}

bool BufferLayer::getTransformToDisplayInverse() const {
    return mBufferInfo.mTransformToDisplayInverse;
}

Rect BufferLayer::getBufferCrop() const {
    // this is the crop rectangle that applies to the buffer
    // itself (as opposed to the window)
    if (!mBufferInfo.mCrop.isEmpty()) {
        // if the buffer crop is defined, we use that
        return mBufferInfo.mCrop;
    } else if (mBufferInfo.mBuffer != nullptr) {
        // otherwise we use the whole buffer
        return mBufferInfo.mBuffer->getBounds();
    } else {
        // if we don't have a buffer yet, we use an empty/invalid crop
        return Rect();
    }
}

uint32_t BufferLayer::getBufferTransform() const {
    return mBufferInfo.mTransform;
}

ui::Dataspace BufferLayer::getDataSpace() const {
    return mBufferInfo.mDataspace;
}

ui::Dataspace BufferLayer::translateDataspace(ui::Dataspace dataspace) {
    ui::Dataspace updatedDataspace = dataspace;
    // translate legacy dataspaces to modern dataspaces
    switch (dataspace) {
        case ui::Dataspace::SRGB:
            updatedDataspace = ui::Dataspace::V0_SRGB;
            break;
        case ui::Dataspace::SRGB_LINEAR:
            updatedDataspace = ui::Dataspace::V0_SRGB_LINEAR;
            break;
        case ui::Dataspace::JFIF:
            updatedDataspace = ui::Dataspace::V0_JFIF;
            break;
        case ui::Dataspace::BT601_625:
            updatedDataspace = ui::Dataspace::V0_BT601_625;
            break;
        case ui::Dataspace::BT601_525:
            updatedDataspace = ui::Dataspace::V0_BT601_525;
            break;
        case ui::Dataspace::BT709:
            updatedDataspace = ui::Dataspace::V0_BT709;
            break;
        default:
            break;
    }

    return updatedDataspace;
}

sp<GraphicBuffer> BufferLayer::getBuffer() const {
    return mBufferInfo.mBuffer ? mBufferInfo.mBuffer->getBuffer() : nullptr;
}

void BufferLayer::getDrawingTransformMatrix(bool filteringEnabled, float outMatrix[16]) {
    GLConsumer::computeTransformMatrix(outMatrix,
                                       mBufferInfo.mBuffer ? mBufferInfo.mBuffer->getBuffer()
                                                           : nullptr,
                                       mBufferInfo.mCrop, mBufferInfo.mTransform, filteringEnabled);
}

void BufferLayer::setInitialValuesForClone(const sp<Layer>& clonedFrom) {
    Layer::setInitialValuesForClone(clonedFrom);

    sp<BufferLayer> bufferClonedFrom = static_cast<BufferLayer*>(clonedFrom.get());
    mPremultipliedAlpha = bufferClonedFrom->mPremultipliedAlpha;
    mPotentialCursor = bufferClonedFrom->mPotentialCursor;
    mProtectedByApp = bufferClonedFrom->mProtectedByApp;

    updateCloneBufferInfo();
}

void BufferLayer::updateCloneBufferInfo() {
    if (!isClone() || !isClonedFromAlive()) {
        return;
    }

    sp<BufferLayer> clonedFrom = static_cast<BufferLayer*>(getClonedFrom().get());
    mBufferInfo = clonedFrom->mBufferInfo;
    mSidebandStream = clonedFrom->mSidebandStream;
    surfaceDamageRegion = clonedFrom->surfaceDamageRegion;
    mCurrentFrameNumber = clonedFrom->mCurrentFrameNumber.load();
    mPreviousFrameNumber = clonedFrom->mPreviousFrameNumber;

    // After buffer info is updated, the drawingState from the real layer needs to be copied into
    // the cloned. This is because some properties of drawingState can change when latchBuffer is
    // called. However, copying the drawingState would also overwrite the cloned layer's relatives
    // and touchableRegionCrop. Therefore, temporarily store the relatives so they can be set in
    // the cloned drawingState again.
    wp<Layer> tmpZOrderRelativeOf = mDrawingState.zOrderRelativeOf;
    SortedVector<wp<Layer>> tmpZOrderRelatives = mDrawingState.zOrderRelatives;
    wp<Layer> tmpTouchableRegionCrop = mDrawingState.touchableRegionCrop;
    WindowInfo tmpInputInfo = mDrawingState.inputInfo;

    cloneDrawingState(clonedFrom.get());

    mDrawingState.touchableRegionCrop = tmpTouchableRegionCrop;
    mDrawingState.zOrderRelativeOf = tmpZOrderRelativeOf;
    mDrawingState.zOrderRelatives = tmpZOrderRelatives;
    mDrawingState.inputInfo = tmpInputInfo;
}

void BufferLayer::setTransformHint(ui::Transform::RotationFlags displayTransformHint) {
    mTransformHint = getFixedTransformHint();
    if (mTransformHint == ui::Transform::ROT_INVALID) {
        mTransformHint = displayTransformHint;
    }
}

bool BufferLayer::bufferNeedsFiltering() const {
    return isFixedSize();
}

const std::shared_ptr<renderengine::ExternalTexture>& BufferLayer::getExternalTexture() const {
    return mBufferInfo.mBuffer;
}

} // namespace android

#if defined(__gl_h_)
#error "don't include gl/gl.h in this file"
#endif

#if defined(__gl2_h_)
#error "don't include gl2/gl2.h in this file"
#endif

// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic pop // ignored "-Wconversion"