summaryrefslogtreecommitdiff
path: root/services/surfaceflinger/Layer.h
blob: f4ae21aad530e65f3e84bab81456c8415693a2ac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
/*
 * Copyright (C) 2007 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef ANDROID_LAYER_H
#define ANDROID_LAYER_H

#include <sys/types.h>

#include <utils/RefBase.h>
#include <utils/String8.h>
#include <utils/Timers.h>

#include <ui/FloatRect.h>
#include <ui/FrameStats.h>
#include <ui/GraphicBuffer.h>
#include <ui/PixelFormat.h>
#include <ui/Region.h>

#include <gui/ISurfaceComposerClient.h>
#include <gui/LayerState.h>
#include <gui/BufferQueue.h>

#include <list>
#include <cstdint>

#include "Client.h"
#include "FrameTracker.h"
#include "LayerVector.h"
#include "MonitoredProducer.h"
#include "SurfaceFlinger.h"
#include "TimeStats/TimeStats.h"
#include "Transform.h"

#include <layerproto/LayerProtoHeader.h>
#include "DisplayHardware/HWComposer.h"
#include "DisplayHardware/HWComposerBufferCache.h"
#include "RenderArea.h"
#include "RenderEngine/Mesh.h"
#include "RenderEngine/Texture.h"

#include <math/vec4.h>
#include <vector>

using namespace android::surfaceflinger;

namespace android {

// ---------------------------------------------------------------------------

class Client;
class Colorizer;
class DisplayDevice;
class GraphicBuffer;
class SurfaceFlinger;
class LayerDebugInfo;
class LayerBE;

namespace impl {
class SurfaceInterceptor;
}

// ---------------------------------------------------------------------------

struct CompositionInfo {
    HWC2::Composition compositionType;
    sp<GraphicBuffer> mBuffer = nullptr;
    int mBufferSlot = BufferQueue::INVALID_BUFFER_SLOT;
    struct {
        HWComposer* hwc;
        sp<Fence> fence;
        HWC2::BlendMode blendMode;
        Rect displayFrame;
        float alpha;
        FloatRect sourceCrop;
        HWC2::Transform transform;
        int z;
        int type;
        int appId;
        Region visibleRegion;
        Region surfaceDamage;
        sp<NativeHandle> sidebandStream;
        android_dataspace dataspace;
        hwc_color_t color;
    } hwc;
    struct {
        RE::RenderEngine* renderEngine;
        Mesh* mesh;
    } renderEngine;
};

class LayerBE {
public:
    LayerBE();

    // The mesh used to draw the layer in GLES composition mode
    Mesh mMesh;

    // HWC items, accessed from the main thread
    struct HWCInfo {
        HWCInfo()
              : hwc(nullptr),
                layer(nullptr),
                forceClientComposition(false),
                compositionType(HWC2::Composition::Invalid),
                clearClientTarget(false),
                transform(HWC2::Transform::None) {}

        HWComposer* hwc;
        HWC2::Layer* layer;
        bool forceClientComposition;
        HWC2::Composition compositionType;
        bool clearClientTarget;
        Rect displayFrame;
        FloatRect sourceCrop;
        HWComposerBufferCache bufferCache;
        HWC2::Transform transform;
    };

    // A layer can be attached to multiple displays when operating in mirror mode
    // (a.k.a: when several displays are attached with equal layerStack). In this
    // case we need to keep track. In non-mirror mode, a layer will have only one
    // HWCInfo. This map key is a display layerStack.
    std::unordered_map<int32_t, HWCInfo> mHwcLayers;

    CompositionInfo compositionInfo;
};

class Layer : public virtual RefBase {
    static int32_t sSequence;

public:
    LayerBE& getBE() { return mBE; }
    LayerBE& getBE() const { return mBE; }
    mutable bool contentDirty;
    // regions below are in window-manager space
    Region visibleRegion;
    Region coveredRegion;
    Region visibleNonTransparentRegion;
    Region surfaceDamageRegion;

    // Layer serial number.  This gives layers an explicit ordering, so we
    // have a stable sort order when their layer stack and Z-order are
    // the same.
    int32_t sequence;

    enum { // flags for doTransaction()
        eDontUpdateGeometryState = 0x00000001,
        eVisibleRegion = 0x00000002,
    };

    struct Geometry {
        uint32_t w;
        uint32_t h;
        Transform transform;

        inline bool operator==(const Geometry& rhs) const {
            return (w == rhs.w && h == rhs.h) && (transform.tx() == rhs.transform.tx()) &&
                    (transform.ty() == rhs.transform.ty());
        }
        inline bool operator!=(const Geometry& rhs) const { return !operator==(rhs); }
    };

    struct State {
        Geometry active;
        Geometry requested;
        int32_t z;

        // The identifier of the layer stack this layer belongs to. A layer can
        // only be associated to a single layer stack. A layer stack is a
        // z-ordered group of layers which can be associated to one or more
        // displays. Using the same layer stack on different displays is a way
        // to achieve mirroring.
        uint32_t layerStack;

        uint8_t flags;
        uint8_t reserved[2];
        int32_t sequence; // changes when visible regions can change
        bool modified;

        // Crop is expressed in layer space coordinate.
        Rect crop;
        Rect requestedCrop;

        // finalCrop is expressed in display space coordinate.
        Rect finalCrop;
        Rect requestedFinalCrop;

        // If set, defers this state update until the identified Layer
        // receives a frame with the given frameNumber
        wp<Layer> barrierLayer;
        uint64_t frameNumber;

        // the transparentRegion hint is a bit special, it's latched only
        // when we receive a buffer -- this is because it's "content"
        // dependent.
        Region activeTransparentRegion;
        Region requestedTransparentRegion;

        int32_t appId;
        int32_t type;

        // If non-null, a Surface this Surface's Z-order is interpreted relative to.
        wp<Layer> zOrderRelativeOf;

        // A list of surfaces whose Z-order is interpreted relative to ours.
        SortedVector<wp<Layer>> zOrderRelatives;

        half4 color;
    };

    Layer(SurfaceFlinger* flinger, const sp<Client>& client, const String8& name, uint32_t w,
          uint32_t h, uint32_t flags);
    virtual ~Layer();

    void setPrimaryDisplayOnly() { mPrimaryDisplayOnly = true; }

    // ------------------------------------------------------------------------
    // Geometry setting functions.
    //
    // The following group of functions are used to specify the layers
    // bounds, and the mapping of the texture on to those bounds. According
    // to various settings changes to them may apply immediately, or be delayed until
    // a pending resize is completed by the producer submitting a buffer. For example
    // if we were to change the buffer size, and update the matrix ahead of the
    // new buffer arriving, then we would be stretching the buffer to a different
    // aspect before and after the buffer arriving, which probably isn't what we wanted.
    //
    // The first set of geometry functions are controlled by the scaling mode, described
    // in window.h. The scaling mode may be set by the client, as it submits buffers.
    // This value may be overriden through SurfaceControl, with setOverrideScalingMode.
    //
    // Put simply, if our scaling mode is SCALING_MODE_FREEZE, then
    // matrix updates will not be applied while a resize is pending
    // and the size and transform will remain in their previous state
    // until a new buffer is submitted. If the scaling mode is another value
    // then the old-buffer will immediately be scaled to the pending size
    // and the new matrix will be immediately applied following this scaling
    // transformation.

    // Set the default buffer size for the assosciated Producer, in pixels. This is
    // also the rendered size of the layer prior to any transformations. Parent
    // or local matrix transformations will not affect the size of the buffer,
    // but may affect it's on-screen size or clipping.
    bool setSize(uint32_t w, uint32_t h);
    // Set a 2x2 transformation matrix on the layer. This transform
    // will be applied after parent transforms, but before any final
    // producer specified transform.
    bool setMatrix(const layer_state_t::matrix22_t& matrix, bool allowNonRectPreservingTransforms);

    // This second set of geometry attributes are controlled by
    // setGeometryAppliesWithResize, and their default mode is to be
    // immediate. If setGeometryAppliesWithResize is specified
    // while a resize is pending, then update of these attributes will
    // be delayed until the resize completes.

    // setPosition operates in parent buffer space (pre parent-transform) or display
    // space for top-level layers.
    bool setPosition(float x, float y, bool immediate);
    // Buffer space
    bool setCrop(const Rect& crop, bool immediate);
    // Parent buffer space/display space
    bool setFinalCrop(const Rect& crop, bool immediate);

    // TODO(b/38182121): Could we eliminate the various latching modes by
    // using the layer hierarchy?
    // -----------------------------------------------------------------------
    bool setLayer(int32_t z);
    bool setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t relativeZ);

    bool setAlpha(float alpha);
    bool setColor(const half3& color);
    bool setTransparentRegionHint(const Region& transparent);
    bool setFlags(uint8_t flags, uint8_t mask);
    bool setLayerStack(uint32_t layerStack);
    uint32_t getLayerStack() const;
    void deferTransactionUntil(const sp<IBinder>& barrierHandle, uint64_t frameNumber);
    void deferTransactionUntil(const sp<Layer>& barrierLayer, uint64_t frameNumber);
    bool setOverrideScalingMode(int32_t overrideScalingMode);
    void setInfo(int32_t type, int32_t appId);
    bool reparentChildren(const sp<IBinder>& layer);
    void setChildrenDrawingParent(const sp<Layer>& layer);
    bool reparent(const sp<IBinder>& newParentHandle);
    bool detachChildren();

    ui::Dataspace getDataSpace() const { return mCurrentDataSpace; }

    // Before color management is introduced, contents on Android have to be
    // desaturated in order to match what they appears like visually.
    // With color management, these contents will appear desaturated, thus
    // needed to be saturated so that they match what they are designed for
    // visually.
    bool isLegacyDataSpace() const;

    // If we have received a new buffer this frame, we will pass its surface
    // damage down to hardware composer. Otherwise, we must send a region with
    // one empty rect.
    virtual void useSurfaceDamage() {}
    virtual void useEmptyDamage() {}

    uint32_t getTransactionFlags(uint32_t flags);
    uint32_t setTransactionFlags(uint32_t flags);

    bool belongsToDisplay(uint32_t layerStack, bool isPrimaryDisplay) const {
        return getLayerStack() == layerStack && (!mPrimaryDisplayOnly || isPrimaryDisplay);
    }

    void computeGeometry(const RenderArea& renderArea, Mesh& mesh, bool useIdentityTransform) const;
    FloatRect computeBounds(const Region& activeTransparentRegion) const;
    FloatRect computeBounds() const;

    int32_t getSequence() const { return sequence; }

    // -----------------------------------------------------------------------
    // Virtuals
    virtual const char* getTypeId() const = 0;

    /*
     * isOpaque - true if this surface is opaque
     *
     * This takes into account the buffer format (i.e. whether or not the
     * pixel format includes an alpha channel) and the "opaque" flag set
     * on the layer.  It does not examine the current plane alpha value.
     */
    virtual bool isOpaque(const Layer::State&) const { return false; }

    /*
     * isSecure - true if this surface is secure, that is if it prevents
     * screenshots or VNC servers.
     */
    bool isSecure() const;

    /*
     * isVisible - true if this layer is visible, false otherwise
     */
    virtual bool isVisible() const = 0;

    /*
     * isHiddenByPolicy - true if this layer has been forced invisible.
     * just because this is false, doesn't mean isVisible() is true.
     * For example if this layer has no active buffer, it may not be hidden by
     * policy, but it still can not be visible.
     */
    bool isHiddenByPolicy() const;

    /*
     * isFixedSize - true if content has a fixed size
     */
    virtual bool isFixedSize() const { return true; }


    bool isPendingRemoval() const { return mPendingRemoval; }

    void writeToProto(LayerProto* layerInfo,
                      LayerVector::StateSet stateSet = LayerVector::StateSet::Drawing);

    void writeToProto(LayerProto* layerInfo, int32_t hwcId);

protected:
    /*
     * onDraw - draws the surface.
     */
    virtual void onDraw(const RenderArea& renderArea, const Region& clip,
                        bool useIdentityTransform) const = 0;

public:
    virtual void setDefaultBufferSize(uint32_t /*w*/, uint32_t /*h*/) {}

    virtual bool isHdrY410() const { return false; }

    void setGeometry(const sp<const DisplayDevice>& displayDevice, uint32_t z);
    void forceClientComposition(int32_t hwcId);
    bool getForceClientComposition(int32_t hwcId);
    virtual void setPerFrameData(const sp<const DisplayDevice>& displayDevice) = 0;

    // callIntoHwc exists so we can update our local state and call
    // acceptDisplayChanges without unnecessarily updating the device's state
    void setCompositionType(int32_t hwcId, HWC2::Composition type, bool callIntoHwc = true);
    HWC2::Composition getCompositionType(int32_t hwcId) const;
    void setClearClientTarget(int32_t hwcId, bool clear);
    bool getClearClientTarget(int32_t hwcId) const;
    void updateCursorPosition(const sp<const DisplayDevice>& hw);

    /*
     * called after page-flip
     */
    virtual void onLayerDisplayed(const sp<Fence>& releaseFence);

    virtual void abandon() {}

    virtual bool shouldPresentNow(const DispSync& /*dispSync*/) const { return false; }
    virtual void setTransformHint(uint32_t /*orientation*/) const { }

    /*
     * called before composition.
     * returns true if the layer has pending updates.
     */
    virtual bool onPreComposition(nsecs_t /*refreshStartTime*/) { return true; }

    /*
     * called after composition.
     * returns true if the layer latched a new buffer this frame.
     */
    virtual bool onPostComposition(const std::shared_ptr<FenceTime>& /*glDoneFence*/,
                                   const std::shared_ptr<FenceTime>& /*presentFence*/,
                                   const CompositorTiming& /*compositorTiming*/) {
        return false;
    }

    // If a buffer was replaced this frame, release the former buffer
    virtual void releasePendingBuffer(nsecs_t /*dequeueReadyTime*/) { }


    /*
     * draw - performs some global clipping optimizations
     * and calls onDraw().
     */
    void draw(const RenderArea& renderArea, const Region& clip) const;
    void draw(const RenderArea& renderArea, bool useIdentityTransform) const;
    void draw(const RenderArea& renderArea) const;

    /*
     * doTransaction - process the transaction. This is a good place to figure
     * out which attributes of the surface have changed.
     */
    uint32_t doTransaction(uint32_t transactionFlags);

    /*
     * setVisibleRegion - called to set the new visible region. This gives
     * a chance to update the new visible region or record the fact it changed.
     */
    void setVisibleRegion(const Region& visibleRegion);

    /*
     * setCoveredRegion - called when the covered region changes. The covered
     * region corresponds to any area of the surface that is covered
     * (transparently or not) by another surface.
     */
    void setCoveredRegion(const Region& coveredRegion);

    /*
     * setVisibleNonTransparentRegion - called when the visible and
     * non-transparent region changes.
     */
    void setVisibleNonTransparentRegion(const Region& visibleNonTransparentRegion);

    /*
     * Clear the visible, covered, and non-transparent regions.
     */
    void clearVisibilityRegions();

    /*
     * latchBuffer - called each time the screen is redrawn and returns whether
     * the visible regions need to be recomputed (this is a fairly heavy
     * operation, so this should be set only if needed). Typically this is used
     * to figure out if the content or size of a surface has changed.
     */
    virtual Region latchBuffer(bool& /*recomputeVisibleRegions*/, nsecs_t /*latchTime*/) {
        return {};
    }

    virtual bool isBufferLatched() const { return false; }

    bool isPotentialCursor() const { return mPotentialCursor; }
    /*
     * called with the state lock from a binder thread when the layer is
     * removed from the current list to the pending removal list
     */
    void onRemovedFromCurrentState();

    /*
     * called with the state lock from the main thread when the layer is
     * removed from the pending removal list
     */
    void onRemoved();

    // Updates the transform hint in our SurfaceFlingerConsumer to match
    // the current orientation of the display device.
    void updateTransformHint(const sp<const DisplayDevice>& hw) const;

    /*
     * returns the rectangle that crops the content of the layer and scales it
     * to the layer's size.
     */
    Rect getContentCrop() const;

    /*
     * Returns if a frame is queued.
     */
    bool hasQueuedFrame() const {
        return mQueuedFrames > 0 || mSidebandStreamChanged || mAutoRefresh;
    }

    int32_t getQueuedFrameCount() const { return mQueuedFrames; }

    // -----------------------------------------------------------------------

    bool createHwcLayer(HWComposer* hwc, int32_t hwcId);
    bool destroyHwcLayer(int32_t hwcId);
    void destroyAllHwcLayers();

    bool hasHwcLayer(int32_t hwcId) {
        return getBE().mHwcLayers.count(hwcId) > 0;
    }

    HWC2::Layer* getHwcLayer(int32_t hwcId) {
        if (getBE().mHwcLayers.count(hwcId) == 0) {
            return nullptr;
        }
        return getBE().mHwcLayers[hwcId].layer;
    }

    // -----------------------------------------------------------------------

    void clearWithOpenGL(const RenderArea& renderArea) const;
    void setFiltering(bool filtering);
    bool getFiltering() const;


    inline const State& getDrawingState() const { return mDrawingState; }
    inline const State& getCurrentState() const { return mCurrentState; }
    inline State& getCurrentState() { return mCurrentState; }

    LayerDebugInfo getLayerDebugInfo() const;

    /* always call base class first */
    static void miniDumpHeader(String8& result);
    void miniDump(String8& result, int32_t hwcId) const;
    void dumpFrameStats(String8& result) const;
    void dumpFrameEvents(String8& result);
    void clearFrameStats();
    void logFrameStats();
    void getFrameStats(FrameStats* outStats) const;

    virtual std::vector<OccupancyTracker::Segment> getOccupancyHistory(bool /*forceFlush*/) {
        return {};
    }

    void onDisconnect();
    void addAndGetFrameTimestamps(const NewFrameEventsEntry* newEntry,
                                  FrameEventHistoryDelta* outDelta);

    virtual bool getTransformToDisplayInverse() const { return false; }

    Transform getTransform() const;

    // Returns the Alpha of the Surface, accounting for the Alpha
    // of parent Surfaces in the hierarchy (alpha's will be multiplied
    // down the hierarchy).
    half getAlpha() const;
    half4 getColor() const;

    void traverseInReverseZOrder(LayerVector::StateSet stateSet,
                                 const LayerVector::Visitor& visitor);
    void traverseInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor);

    /**
     * Traverse only children in z order, ignoring relative layers that are not children of the
     * parent.
     */
    void traverseChildrenInZOrder(LayerVector::StateSet stateSet,
                                  const LayerVector::Visitor& visitor);

    size_t getChildrenCount() const;
    void addChild(const sp<Layer>& layer);
    // Returns index if removed, or negative value otherwise
    // for symmetry with Vector::remove
    ssize_t removeChild(const sp<Layer>& layer);
    sp<Layer> getParent() const { return mCurrentParent.promote(); }
    bool hasParent() const { return getParent() != nullptr; }
    Rect computeScreenBounds(bool reduceTransparentRegion = true) const;
    bool setChildLayer(const sp<Layer>& childLayer, int32_t z);
    bool setChildRelativeLayer(const sp<Layer>& childLayer,
            const sp<IBinder>& relativeToHandle, int32_t relativeZ);

    // Copy the current list of children to the drawing state. Called by
    // SurfaceFlinger to complete a transaction.
    void commitChildList();
    int32_t getZ() const;
    void pushPendingState();

protected:
    // constant
    sp<SurfaceFlinger> mFlinger;
    /*
     * Trivial class, used to ensure that mFlinger->onLayerDestroyed(mLayer)
     * is called.
     */
    class LayerCleaner {
        sp<SurfaceFlinger> mFlinger;
        wp<Layer> mLayer;

    protected:
        ~LayerCleaner() {
            // destroy client resources
            mFlinger->onLayerDestroyed(mLayer);
        }

    public:
        LayerCleaner(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer)
              : mFlinger(flinger), mLayer(layer) {}
    };

    virtual void onFirstRef();

    friend class impl::SurfaceInterceptor;

    void commitTransaction(const State& stateToCommit);

    uint32_t getEffectiveUsage(uint32_t usage) const;

    FloatRect computeCrop(const sp<const DisplayDevice>& hw) const;
    // Compute the initial crop as specified by parent layers and the
    // SurfaceControl for this layer. Does not include buffer crop from the
    // IGraphicBufferProducer client, as that should not affect child clipping.
    // Returns in screen space.
    Rect computeInitialCrop(const sp<const DisplayDevice>& hw) const;

    // drawing
    void clearWithOpenGL(const RenderArea& renderArea, float r, float g, float b,
                         float alpha) const;

    void setParent(const sp<Layer>& layer);

    LayerVector makeTraversalList(LayerVector::StateSet stateSet, bool* outSkipRelativeZUsers);
    void addZOrderRelative(const wp<Layer>& relative);
    void removeZOrderRelative(const wp<Layer>& relative);

    class SyncPoint {
    public:
        explicit SyncPoint(uint64_t frameNumber)
              : mFrameNumber(frameNumber), mFrameIsAvailable(false), mTransactionIsApplied(false) {}

        uint64_t getFrameNumber() const { return mFrameNumber; }

        bool frameIsAvailable() const { return mFrameIsAvailable; }

        void setFrameAvailable() { mFrameIsAvailable = true; }

        bool transactionIsApplied() const { return mTransactionIsApplied; }

        void setTransactionApplied() { mTransactionIsApplied = true; }

    private:
        const uint64_t mFrameNumber;
        std::atomic<bool> mFrameIsAvailable;
        std::atomic<bool> mTransactionIsApplied;
    };

    // SyncPoints which will be signaled when the correct frame is at the head
    // of the queue and dropped after the frame has been latched. Protected by
    // mLocalSyncPointMutex.
    Mutex mLocalSyncPointMutex;
    std::list<std::shared_ptr<SyncPoint>> mLocalSyncPoints;

    // SyncPoints which will be signaled and then dropped when the transaction
    // is applied
    std::list<std::shared_ptr<SyncPoint>> mRemoteSyncPoints;

    // Returns false if the relevant frame has already been latched
    bool addSyncPoint(const std::shared_ptr<SyncPoint>& point);

    void popPendingState(State* stateToCommit);
    bool applyPendingStates(State* stateToCommit);

    void clearSyncPoints();

    // Returns mCurrentScaling mode (originating from the
    // Client) or mOverrideScalingMode mode (originating from
    // the Surface Controller) if set.
    virtual uint32_t getEffectiveScalingMode() const { return 0; }

public:
    /*
     * The layer handle is just a BBinder object passed to the client
     * (remote process) -- we don't keep any reference on our side such that
     * the dtor is called when the remote side let go of its reference.
     *
     * LayerCleaner ensures that mFlinger->onLayerDestroyed() is called for
     * this layer when the handle is destroyed.
     */
    class Handle : public BBinder, public LayerCleaner {
    public:
        Handle(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer)
              : LayerCleaner(flinger, layer), owner(layer) {}

        wp<Layer> owner;
    };

    sp<IBinder> getHandle();
    const String8& getName() const;
    virtual void notifyAvailableFrames() {}
    virtual PixelFormat getPixelFormat() const { return PIXEL_FORMAT_NONE; }
    bool getPremultipledAlpha() const;

protected:
    // -----------------------------------------------------------------------
    bool usingRelativeZ(LayerVector::StateSet stateSet);

    bool mPremultipliedAlpha;
    String8 mName;
    String8 mTransactionName; // A cached version of "TX - " + mName for systraces

    bool mPrimaryDisplayOnly = false;

    // these are protected by an external lock
    State mCurrentState;
    State mDrawingState;
    volatile int32_t mTransactionFlags;

    // Accessed from main thread and binder threads
    Mutex mPendingStateMutex;
    Vector<State> mPendingStates;

    // thread-safe
    volatile int32_t mQueuedFrames;
    volatile int32_t mSidebandStreamChanged; // used like an atomic boolean

    // Timestamp history for UIAutomation. Thread safe.
    FrameTracker mFrameTracker;

    // Timestamp history for the consumer to query.
    // Accessed by both consumer and producer on main and binder threads.
    Mutex mFrameEventHistoryMutex;
    ConsumerFrameEventHistory mFrameEventHistory;
    FenceTimeline mAcquireTimeline;
    FenceTimeline mReleaseTimeline;

    TimeStats& mTimeStats = TimeStats::getInstance();

    // main thread
    int mActiveBufferSlot;
    sp<GraphicBuffer> mActiveBuffer;
    sp<NativeHandle> mSidebandStream;
    ui::Dataspace mCurrentDataSpace = ui::Dataspace::UNKNOWN;
    Rect mCurrentCrop;
    uint32_t mCurrentTransform;
    // We encode unset as -1.
    int32_t mOverrideScalingMode;
    bool mCurrentOpacity;
    std::atomic<uint64_t> mCurrentFrameNumber;
    bool mFrameLatencyNeeded;
    // Whether filtering is forced on or not
    bool mFiltering;
    // Whether filtering is needed b/c of the drawingstate
    bool mNeedsFiltering;

    bool mPendingRemoval = false;

    // page-flip thread (currently main thread)
    bool mProtectedByApp; // application requires protected path to external sink

    // protected by mLock
    mutable Mutex mLock;

    const wp<Client> mClientRef;

    // This layer can be a cursor on some displays.
    bool mPotentialCursor;

    // Local copy of the queued contents of the incoming BufferQueue
    mutable Mutex mQueueItemLock;
    Condition mQueueItemCondition;
    Vector<BufferItem> mQueueItems;
    std::atomic<uint64_t> mLastFrameNumberReceived;
    bool mAutoRefresh;
    bool mFreezeGeometryUpdates;

    // Child list about to be committed/used for editing.
    LayerVector mCurrentChildren;
    // Child list used for rendering.
    LayerVector mDrawingChildren;

    wp<Layer> mCurrentParent;
    wp<Layer> mDrawingParent;

    mutable LayerBE mBE;

private:
    /**
     * Returns an unsorted vector of all layers that are part of this tree.
     * That includes the current layer and all its descendants.
     */
    std::vector<Layer*> getLayersInTree(LayerVector::StateSet stateSet);
    /**
     * Traverses layers that are part of this tree in the correct z order.
     * layersInTree must be sorted before calling this method.
     */
    void traverseChildrenInZOrderInner(const std::vector<Layer*>& layersInTree,
                                       LayerVector::StateSet stateSet,
                                       const LayerVector::Visitor& visitor);
    LayerVector makeChildrenTraversalList(LayerVector::StateSet stateSet,
                                          const std::vector<Layer*>& layersInTree);
};

// ---------------------------------------------------------------------------

}; // namespace android

#endif // ANDROID_LAYER_H