summaryrefslogtreecommitdiff
path: root/services/surfaceflinger/RegionSamplingThread.cpp
blob: 27353d8c0b3f41b9dee203f62d22b34aa306e36a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
/*
 * Copyright 2019 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wconversion"

//#define LOG_NDEBUG 0
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#undef LOG_TAG
#define LOG_TAG "RegionSamplingThread"

#include "RegionSamplingThread.h"

#include <compositionengine/Display.h>
#include <compositionengine/impl/OutputCompositionState.h>
#include <cutils/properties.h>
#include <gui/IRegionSamplingListener.h>
#include <ui/DisplayStatInfo.h>
#include <utils/Trace.h>

#include <string>

#include "DisplayDevice.h"
#include "Layer.h"
#include "Scheduler/DispSync.h"
#include "SurfaceFlinger.h"

namespace android {
using namespace std::chrono_literals;

template <typename T>
struct SpHash {
    size_t operator()(const sp<T>& p) const { return std::hash<T*>()(p.get()); }
};

constexpr auto lumaSamplingStepTag = "LumaSamplingStep";
enum class samplingStep {
    noWorkNeeded,
    idleTimerWaiting,
    waitForQuietFrame,
    waitForZeroPhase,
    waitForSamplePhase,
    sample
};

constexpr auto timeForRegionSampling = 5000000ns;
constexpr auto maxRegionSamplingSkips = 10;
constexpr auto defaultRegionSamplingOffset = -3ms;
constexpr auto defaultRegionSamplingPeriod = 100ms;
constexpr auto defaultRegionSamplingTimerTimeout = 100ms;
// TODO: (b/127403193) duration to string conversion could probably be constexpr
template <typename Rep, typename Per>
inline std::string toNsString(std::chrono::duration<Rep, Per> t) {
    return std::to_string(std::chrono::duration_cast<std::chrono::nanoseconds>(t).count());
}

RegionSamplingThread::EnvironmentTimingTunables::EnvironmentTimingTunables() {
    char value[PROPERTY_VALUE_MAX] = {};

    property_get("debug.sf.region_sampling_offset_ns", value,
                 toNsString(defaultRegionSamplingOffset).c_str());
    int const samplingOffsetNsRaw = atoi(value);

    property_get("debug.sf.region_sampling_period_ns", value,
                 toNsString(defaultRegionSamplingPeriod).c_str());
    int const samplingPeriodNsRaw = atoi(value);

    property_get("debug.sf.region_sampling_timer_timeout_ns", value,
                 toNsString(defaultRegionSamplingTimerTimeout).c_str());
    int const samplingTimerTimeoutNsRaw = atoi(value);

    if ((samplingPeriodNsRaw < 0) || (samplingTimerTimeoutNsRaw < 0)) {
        ALOGW("User-specified sampling tuning options nonsensical. Using defaults");
        mSamplingOffset = defaultRegionSamplingOffset;
        mSamplingPeriod = defaultRegionSamplingPeriod;
        mSamplingTimerTimeout = defaultRegionSamplingTimerTimeout;
    } else {
        mSamplingOffset = std::chrono::nanoseconds(samplingOffsetNsRaw);
        mSamplingPeriod = std::chrono::nanoseconds(samplingPeriodNsRaw);
        mSamplingTimerTimeout = std::chrono::nanoseconds(samplingTimerTimeoutNsRaw);
    }
}

struct SamplingOffsetCallback : DispSync::Callback {
    SamplingOffsetCallback(RegionSamplingThread& samplingThread, Scheduler& scheduler,
                           std::chrono::nanoseconds targetSamplingOffset)
          : mRegionSamplingThread(samplingThread),
            mScheduler(scheduler),
            mTargetSamplingOffset(targetSamplingOffset) {}

    ~SamplingOffsetCallback() { stopVsyncListener(); }

    SamplingOffsetCallback(const SamplingOffsetCallback&) = delete;
    SamplingOffsetCallback& operator=(const SamplingOffsetCallback&) = delete;

    void startVsyncListener() {
        std::lock_guard lock(mMutex);
        if (mVsyncListening) return;

        mPhaseIntervalSetting = Phase::ZERO;
        mScheduler.getPrimaryDispSync().addEventListener("SamplingThreadDispSyncListener", 0, this,
                                                         mLastCallbackTime);
        mVsyncListening = true;
    }

    void stopVsyncListener() {
        std::lock_guard lock(mMutex);
        stopVsyncListenerLocked();
    }

private:
    void stopVsyncListenerLocked() /*REQUIRES(mMutex)*/ {
        if (!mVsyncListening) return;

        mScheduler.getPrimaryDispSync().removeEventListener(this, &mLastCallbackTime);
        mVsyncListening = false;
    }

    void onDispSyncEvent(nsecs_t /*when*/, nsecs_t /*expectedVSyncTimestamp*/) final {
        std::unique_lock<decltype(mMutex)> lock(mMutex);

        if (mPhaseIntervalSetting == Phase::ZERO) {
            ATRACE_INT(lumaSamplingStepTag, static_cast<int>(samplingStep::waitForSamplePhase));
            mPhaseIntervalSetting = Phase::SAMPLING;
            mScheduler.getPrimaryDispSync().changePhaseOffset(this, mTargetSamplingOffset.count());
            return;
        }

        if (mPhaseIntervalSetting == Phase::SAMPLING) {
            mPhaseIntervalSetting = Phase::ZERO;
            mScheduler.getPrimaryDispSync().changePhaseOffset(this, 0);
            stopVsyncListenerLocked();
            lock.unlock();
            mRegionSamplingThread.notifySamplingOffset();
            return;
        }
    }

    RegionSamplingThread& mRegionSamplingThread;
    Scheduler& mScheduler;
    const std::chrono::nanoseconds mTargetSamplingOffset;
    mutable std::mutex mMutex;
    nsecs_t mLastCallbackTime = 0;
    enum class Phase {
        ZERO,
        SAMPLING
    } mPhaseIntervalSetting /*GUARDED_BY(mMutex) macro doesnt work with unique_lock?*/
            = Phase::ZERO;
    bool mVsyncListening /*GUARDED_BY(mMutex)*/ = false;
};

RegionSamplingThread::RegionSamplingThread(SurfaceFlinger& flinger, Scheduler& scheduler,
                                           const TimingTunables& tunables)
      : mFlinger(flinger),
        mScheduler(scheduler),
        mTunables(tunables),
        mIdleTimer(std::chrono::duration_cast<std::chrono::milliseconds>(
                           mTunables.mSamplingTimerTimeout),
                   [] {}, [this] { checkForStaleLuma(); }),
        mPhaseCallback(std::make_unique<SamplingOffsetCallback>(*this, mScheduler,
                                                                tunables.mSamplingOffset)),
        lastSampleTime(0ns) {
    mThread = std::thread([this]() { threadMain(); });
    pthread_setname_np(mThread.native_handle(), "RegionSamplingThread");
    mIdleTimer.start();
}

RegionSamplingThread::RegionSamplingThread(SurfaceFlinger& flinger, Scheduler& scheduler)
      : RegionSamplingThread(flinger, scheduler,
                             TimingTunables{defaultRegionSamplingOffset,
                                            defaultRegionSamplingPeriod,
                                            defaultRegionSamplingTimerTimeout}) {}

RegionSamplingThread::~RegionSamplingThread() {
    mIdleTimer.stop();

    {
        std::lock_guard lock(mThreadControlMutex);
        mRunning = false;
        mCondition.notify_one();
    }

    if (mThread.joinable()) {
        mThread.join();
    }
}

void RegionSamplingThread::addListener(const Rect& samplingArea, const wp<Layer>& stopLayer,
                                       const sp<IRegionSamplingListener>& listener) {
    sp<IBinder> asBinder = IInterface::asBinder(listener);
    asBinder->linkToDeath(this);
    std::lock_guard lock(mSamplingMutex);
    mDescriptors.emplace(wp<IBinder>(asBinder), Descriptor{samplingArea, stopLayer, listener});
}

void RegionSamplingThread::removeListener(const sp<IRegionSamplingListener>& listener) {
    std::lock_guard lock(mSamplingMutex);
    mDescriptors.erase(wp<IBinder>(IInterface::asBinder(listener)));
}

void RegionSamplingThread::checkForStaleLuma() {
    std::lock_guard lock(mThreadControlMutex);

    if (mDiscardedFrames > 0) {
        ATRACE_INT(lumaSamplingStepTag, static_cast<int>(samplingStep::waitForZeroPhase));
        mDiscardedFrames = 0;
        mPhaseCallback->startVsyncListener();
    }
}

void RegionSamplingThread::notifyNewContent() {
    doSample();
}

void RegionSamplingThread::notifySamplingOffset() {
    doSample();
}

void RegionSamplingThread::doSample() {
    std::lock_guard lock(mThreadControlMutex);
    auto now = std::chrono::nanoseconds(systemTime(SYSTEM_TIME_MONOTONIC));
    if (lastSampleTime + mTunables.mSamplingPeriod > now) {
        ATRACE_INT(lumaSamplingStepTag, static_cast<int>(samplingStep::idleTimerWaiting));
        if (mDiscardedFrames == 0) mDiscardedFrames++;
        return;
    }
    if (mDiscardedFrames < maxRegionSamplingSkips) {
        // If there is relatively little time left for surfaceflinger
        // until the next vsync deadline, defer this sampling work
        // to a later frame, when hopefully there will be more time.
        DisplayStatInfo stats;
        mScheduler.getDisplayStatInfo(&stats);
        if (std::chrono::nanoseconds(stats.vsyncTime) - now < timeForRegionSampling) {
            ATRACE_INT(lumaSamplingStepTag, static_cast<int>(samplingStep::waitForQuietFrame));
            mDiscardedFrames++;
            return;
        }
    }

    ATRACE_INT(lumaSamplingStepTag, static_cast<int>(samplingStep::sample));

    mDiscardedFrames = 0;
    lastSampleTime = now;

    mIdleTimer.reset();
    mPhaseCallback->stopVsyncListener();

    mSampleRequested = true;
    mCondition.notify_one();
}

void RegionSamplingThread::binderDied(const wp<IBinder>& who) {
    std::lock_guard lock(mSamplingMutex);
    mDescriptors.erase(who);
}

float sampleArea(const uint32_t* data, int32_t width, int32_t height, int32_t stride,
                 uint32_t orientation, const Rect& sample_area) {
    if (!sample_area.isValid() || (sample_area.getWidth() > width) ||
        (sample_area.getHeight() > height)) {
        ALOGE("invalid sampling region requested");
        return 0.0f;
    }

    // (b/133849373) ROT_90 screencap images produced upside down
    auto area = sample_area;
    if (orientation & ui::Transform::ROT_90) {
        area.top = height - area.top;
        area.bottom = height - area.bottom;
        std::swap(area.top, area.bottom);

        area.left = width - area.left;
        area.right = width - area.right;
        std::swap(area.left, area.right);
    }

    const uint32_t pixelCount = (area.bottom - area.top) * (area.right - area.left);
    uint32_t accumulatedLuma = 0;

    // Calculates luma with approximation of Rec. 709 primaries
    for (int32_t row = area.top; row < area.bottom; ++row) {
        const uint32_t* rowBase = data + row * stride;
        for (int32_t column = area.left; column < area.right; ++column) {
            uint32_t pixel = rowBase[column];
            const uint32_t r = pixel & 0xFF;
            const uint32_t g = (pixel >> 8) & 0xFF;
            const uint32_t b = (pixel >> 16) & 0xFF;
            const uint32_t luma = (r * 7 + b * 2 + g * 23) >> 5;
            accumulatedLuma += luma;
        }
    }

    return accumulatedLuma / (255.0f * pixelCount);
}

std::vector<float> RegionSamplingThread::sampleBuffer(
        const sp<GraphicBuffer>& buffer, const Point& leftTop,
        const std::vector<RegionSamplingThread::Descriptor>& descriptors, uint32_t orientation) {
    void* data_raw = nullptr;
    buffer->lock(GRALLOC_USAGE_SW_READ_OFTEN, &data_raw);
    std::shared_ptr<uint32_t> data(reinterpret_cast<uint32_t*>(data_raw),
                                   [&buffer](auto) { buffer->unlock(); });
    if (!data) return {};

    const int32_t width = buffer->getWidth();
    const int32_t height = buffer->getHeight();
    const int32_t stride = buffer->getStride();
    std::vector<float> lumas(descriptors.size());
    std::transform(descriptors.begin(), descriptors.end(), lumas.begin(),
                   [&](auto const& descriptor) {
                       return sampleArea(data.get(), width, height, stride, orientation,
                                         descriptor.area - leftTop);
                   });
    return lumas;
}

void RegionSamplingThread::captureSample() {
    ATRACE_CALL();
    std::lock_guard lock(mSamplingMutex);

    if (mDescriptors.empty()) {
        return;
    }

    const auto device = mFlinger.getDefaultDisplayDevice();
    const auto orientation = ui::Transform::toRotationFlags(device->getOrientation());

    std::vector<RegionSamplingThread::Descriptor> descriptors;
    Region sampleRegion;
    for (const auto& [listener, descriptor] : mDescriptors) {
        sampleRegion.orSelf(descriptor.area);
        descriptors.emplace_back(descriptor);
    }

    const Rect sampledArea = sampleRegion.bounds();

    auto dx = 0;
    auto dy = 0;
    switch (orientation) {
        case ui::Transform::ROT_90:
            dx = device->getWidth();
            break;
        case ui::Transform::ROT_180:
            dx = device->getWidth();
            dy = device->getHeight();
            break;
        case ui::Transform::ROT_270:
            dy = device->getHeight();
            break;
        default:
            break;
    }

    ui::Transform t(orientation);
    auto screencapRegion = t.transform(sampleRegion);
    screencapRegion = screencapRegion.translate(dx, dy);
    DisplayRenderArea renderArea(device, screencapRegion.bounds(), sampledArea.getWidth(),
                                 sampledArea.getHeight(), ui::Dataspace::V0_SRGB, orientation);

    std::unordered_set<sp<IRegionSamplingListener>, SpHash<IRegionSamplingListener>> listeners;

    auto traverseLayers = [&](const LayerVector::Visitor& visitor) {
        bool stopLayerFound = false;
        auto filterVisitor = [&](Layer* layer) {
            // We don't want to capture any layers beyond the stop layer
            if (stopLayerFound) return;

            // Likewise if we just found a stop layer, set the flag and abort
            for (const auto& [area, stopLayer, listener] : descriptors) {
                if (layer == stopLayer.promote().get()) {
                    stopLayerFound = true;
                    return;
                }
            }

            // Compute the layer's position on the screen
            const Rect bounds = Rect(layer->getBounds());
            const ui::Transform transform = layer->getTransform();
            constexpr bool roundOutwards = true;
            Rect transformed = transform.transform(bounds, roundOutwards);

            // If this layer doesn't intersect with the larger sampledArea, skip capturing it
            Rect ignore;
            if (!transformed.intersect(sampledArea, &ignore)) return;

            // If the layer doesn't intersect a sampling area, skip capturing it
            bool intersectsAnyArea = false;
            for (const auto& [area, stopLayer, listener] : descriptors) {
                if (transformed.intersect(area, &ignore)) {
                    intersectsAnyArea = true;
                    listeners.insert(listener);
                }
            }
            if (!intersectsAnyArea) return;

            ALOGV("Traversing [%s] [%d, %d, %d, %d]", layer->getDebugName(), bounds.left,
                  bounds.top, bounds.right, bounds.bottom);
            visitor(layer);
        };
        mFlinger.traverseLayersInDisplay(device, filterVisitor);
    };

    sp<GraphicBuffer> buffer = nullptr;
    if (mCachedBuffer && mCachedBuffer->getWidth() == sampledArea.getWidth() &&
        mCachedBuffer->getHeight() == sampledArea.getHeight()) {
        buffer = mCachedBuffer;
    } else {
        const uint32_t usage = GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_HW_RENDER;
        buffer = new GraphicBuffer(sampledArea.getWidth(), sampledArea.getHeight(),
                                   PIXEL_FORMAT_RGBA_8888, 1, usage, "RegionSamplingThread");
    }

    bool ignored;
    mFlinger.captureScreenCommon(renderArea, traverseLayers, buffer, false /* identityTransform */,
                                 true /* regionSampling */, ignored);

    std::vector<Descriptor> activeDescriptors;
    for (const auto& descriptor : descriptors) {
        if (listeners.count(descriptor.listener) != 0) {
            activeDescriptors.emplace_back(descriptor);
        }
    }

    ALOGV("Sampling %zu descriptors", activeDescriptors.size());
    std::vector<float> lumas =
            sampleBuffer(buffer, sampledArea.leftTop(), activeDescriptors, orientation);
    if (lumas.size() != activeDescriptors.size()) {
        ALOGW("collected %zu median luma values for %zu descriptors", lumas.size(),
              activeDescriptors.size());
        return;
    }

    for (size_t d = 0; d < activeDescriptors.size(); ++d) {
        activeDescriptors[d].listener->onSampleCollected(lumas[d]);
    }

    // Extend the lifetime of mCachedBuffer from the previous frame to here to ensure that:
    // 1) The region sampling thread is the last owner of the buffer, and the freeing of the buffer
    // happens in this thread, as opposed to the main thread.
    // 2) The listener(s) receive their notifications prior to freeing the buffer.
    mCachedBuffer = buffer;
    ATRACE_INT(lumaSamplingStepTag, static_cast<int>(samplingStep::noWorkNeeded));
}

// NO_THREAD_SAFETY_ANALYSIS is because std::unique_lock presently lacks thread safety annotations.
void RegionSamplingThread::threadMain() NO_THREAD_SAFETY_ANALYSIS {
    std::unique_lock<std::mutex> lock(mThreadControlMutex);
    while (mRunning) {
        if (mSampleRequested) {
            mSampleRequested = false;
            lock.unlock();
            captureSample();
            lock.lock();
        }
        mCondition.wait(lock, [this]() REQUIRES(mThreadControlMutex) {
            return mSampleRequested || !mRunning;
        });
    }
}

} // namespace android

// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic pop // ignored "-Wconversion"