summaryrefslogtreecommitdiff
path: root/services/surfaceflinger/Scheduler/DispSync.cpp
blob: ff91bf7bc078e1a8b1a41d3f944e00ef5247710b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
/*
 * Copyright (C) 2013 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wconversion"

#define ATRACE_TAG ATRACE_TAG_GRAPHICS
//#define LOG_NDEBUG 0

// This is needed for stdint.h to define INT64_MAX in C++
#define __STDC_LIMIT_MACROS

#include <math.h>

#include <algorithm>

#include <android-base/stringprintf.h>
#include <cutils/properties.h>
#include <log/log.h>
#include <utils/Thread.h>
#include <utils/Trace.h>

#include <ui/FenceTime.h>

#include "DispSync.h"
#include "EventLog/EventLog.h"
#include "SurfaceFlinger.h"

using android::base::StringAppendF;
using std::max;
using std::min;

namespace android {

DispSync::~DispSync() = default;
DispSync::Callback::~Callback() = default;

namespace impl {

// Setting this to true adds a zero-phase tracer for correlating with hardware
// vsync events
static const bool kEnableZeroPhaseTracer = false;

// This is the threshold used to determine when hardware vsync events are
// needed to re-synchronize the software vsync model with the hardware.  The
// error metric used is the mean of the squared difference between each
// present time and the nearest software-predicted vsync.
static const nsecs_t kErrorThreshold = 160000000000; // 400 usec squared

#undef LOG_TAG
#define LOG_TAG "DispSyncThread"
class DispSyncThread : public Thread {
public:
    DispSyncThread(const char* name, bool showTraceDetailedInfo)
          : mName(name),
            mStop(false),
            mModelLocked("DispSync:ModelLocked", false),
            mPeriod(0),
            mPhase(0),
            mReferenceTime(0),
            mWakeupLatency(0),
            mFrameNumber(0),
            mTraceDetailedInfo(showTraceDetailedInfo) {}

    virtual ~DispSyncThread() {}

    void updateModel(nsecs_t period, nsecs_t phase, nsecs_t referenceTime) {
        if (mTraceDetailedInfo) ATRACE_CALL();
        Mutex::Autolock lock(mMutex);

        mPhase = phase;
        const bool referenceTimeChanged = mReferenceTime != referenceTime;
        mReferenceTime = referenceTime;
        if (mPeriod != 0 && mPeriod != period && mReferenceTime != 0) {
            // Inflate the reference time to be the most recent predicted
            // vsync before the current time.
            const nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
            const nsecs_t baseTime = now - mReferenceTime;
            const nsecs_t numOldPeriods = baseTime / mPeriod;
            mReferenceTime = mReferenceTime + (numOldPeriods)*mPeriod;
        }
        mPeriod = period;
        if (!mModelLocked && referenceTimeChanged) {
            for (auto& eventListener : mEventListeners) {
                eventListener.mLastEventTime = mReferenceTime + mPhase + eventListener.mPhase;
                // If mLastEventTime is after mReferenceTime (can happen when positive phase offsets
                // are used) we treat it as like it happened in previous period.
                if (eventListener.mLastEventTime > mReferenceTime) {
                    eventListener.mLastEventTime -= mPeriod;
                }
            }
        }
        if (mTraceDetailedInfo) {
            ATRACE_INT64("DispSync:Period", mPeriod);
            ATRACE_INT64("DispSync:Phase", mPhase + mPeriod / 2);
            ATRACE_INT64("DispSync:Reference Time", mReferenceTime);
        }
        ALOGV("[%s] updateModel: mPeriod = %" PRId64 ", mPhase = %" PRId64
              " mReferenceTime = %" PRId64,
              mName, ns2us(mPeriod), ns2us(mPhase), ns2us(mReferenceTime));
        mCond.signal();
    }

    void stop() {
        if (mTraceDetailedInfo) ATRACE_CALL();
        Mutex::Autolock lock(mMutex);
        mStop = true;
        mCond.signal();
    }

    void lockModel() {
        Mutex::Autolock lock(mMutex);
        mModelLocked = true;
    }

    void unlockModel() {
        Mutex::Autolock lock(mMutex);
        mModelLocked = false;
    }

    virtual bool threadLoop() {
        status_t err;
        nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);

        while (true) {
            std::vector<CallbackInvocation> callbackInvocations;

            nsecs_t targetTime = 0;

            { // Scope for lock
                Mutex::Autolock lock(mMutex);

                if (mTraceDetailedInfo) {
                    ATRACE_INT64("DispSync:Frame", mFrameNumber);
                }
                ALOGV("[%s] Frame %" PRId64, mName, mFrameNumber);
                ++mFrameNumber;

                if (mStop) {
                    return false;
                }

                if (mPeriod == 0) {
                    err = mCond.wait(mMutex);
                    if (err != NO_ERROR) {
                        ALOGE("error waiting for new events: %s (%d)", strerror(-err), err);
                        return false;
                    }
                    continue;
                }

                targetTime = computeNextEventTimeLocked(now);

                bool isWakeup = false;

                if (now < targetTime) {
                    if (mTraceDetailedInfo) ATRACE_NAME("DispSync waiting");

                    if (targetTime == INT64_MAX) {
                        ALOGV("[%s] Waiting forever", mName);
                        err = mCond.wait(mMutex);
                    } else {
                        ALOGV("[%s] Waiting until %" PRId64, mName, ns2us(targetTime));
                        err = mCond.waitRelative(mMutex, targetTime - now);
                    }

                    if (err == TIMED_OUT) {
                        isWakeup = true;
                    } else if (err != NO_ERROR) {
                        ALOGE("error waiting for next event: %s (%d)", strerror(-err), err);
                        return false;
                    }
                }

                now = systemTime(SYSTEM_TIME_MONOTONIC);

                // Don't correct by more than 1.5 ms
                static const nsecs_t kMaxWakeupLatency = us2ns(1500);

                if (isWakeup) {
                    mWakeupLatency = ((mWakeupLatency * 63) + (now - targetTime)) / 64;
                    mWakeupLatency = min(mWakeupLatency, kMaxWakeupLatency);
                    if (mTraceDetailedInfo) {
                        ATRACE_INT64("DispSync:WakeupLat", now - targetTime);
                        ATRACE_INT64("DispSync:AvgWakeupLat", mWakeupLatency);
                    }
                }

                callbackInvocations =
                        gatherCallbackInvocationsLocked(now, computeNextRefreshLocked(0, now));
            }

            if (callbackInvocations.size() > 0) {
                fireCallbackInvocations(callbackInvocations);
            }
        }

        return false;
    }

    status_t addEventListener(const char* name, nsecs_t phase, DispSync::Callback* callback,
                              nsecs_t lastCallbackTime) {
        if (mTraceDetailedInfo) ATRACE_CALL();
        Mutex::Autolock lock(mMutex);

        for (size_t i = 0; i < mEventListeners.size(); i++) {
            if (mEventListeners[i].mCallback == callback) {
                return BAD_VALUE;
            }
        }

        EventListener listener;
        listener.mName = name;
        listener.mPhase = phase;
        listener.mCallback = callback;

        // We want to allow the firstmost future event to fire without
        // allowing any past events to fire. To do this extrapolate from
        // mReferenceTime the most recent hardware vsync, and pin the
        // last event time there.
        const nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
        if (mPeriod != 0) {
            const nsecs_t baseTime = now - mReferenceTime;
            const nsecs_t numPeriodsSinceReference = baseTime / mPeriod;
            const nsecs_t predictedReference = mReferenceTime + numPeriodsSinceReference * mPeriod;
            const nsecs_t phaseCorrection = mPhase + listener.mPhase;
            const nsecs_t predictedLastEventTime = predictedReference + phaseCorrection;
            if (predictedLastEventTime >= now) {
                // Make sure that the last event time does not exceed the current time.
                // If it would, then back the last event time by a period.
                listener.mLastEventTime = predictedLastEventTime - mPeriod;
            } else {
                listener.mLastEventTime = predictedLastEventTime;
            }
        } else {
            listener.mLastEventTime = now + mPhase - mWakeupLatency;
        }

        if (lastCallbackTime <= 0) {
            // If there is no prior callback time, try to infer one based on the
            // logical last event time.
            listener.mLastCallbackTime = listener.mLastEventTime + mWakeupLatency;
        } else {
            listener.mLastCallbackTime = lastCallbackTime;
        }

        mEventListeners.push_back(listener);

        mCond.signal();

        return NO_ERROR;
    }

    status_t removeEventListener(DispSync::Callback* callback, nsecs_t* outLastCallback) {
        if (mTraceDetailedInfo) ATRACE_CALL();
        Mutex::Autolock lock(mMutex);

        for (std::vector<EventListener>::iterator it = mEventListeners.begin();
             it != mEventListeners.end(); ++it) {
            if (it->mCallback == callback) {
                *outLastCallback = it->mLastCallbackTime;
                mEventListeners.erase(it);
                mCond.signal();
                return NO_ERROR;
            }
        }

        return BAD_VALUE;
    }

    status_t changePhaseOffset(DispSync::Callback* callback, nsecs_t phase) {
        if (mTraceDetailedInfo) ATRACE_CALL();
        Mutex::Autolock lock(mMutex);

        for (auto& eventListener : mEventListeners) {
            if (eventListener.mCallback == callback) {
                const nsecs_t oldPhase = eventListener.mPhase;
                eventListener.mPhase = phase;

                // Pretend that the last time this event was handled at the same frame but with the
                // new offset to allow for a seamless offset change without double-firing or
                // skipping.
                nsecs_t diff = oldPhase - phase;
                eventListener.mLastEventTime -= diff;
                eventListener.mLastCallbackTime -= diff;
                mCond.signal();
                return NO_ERROR;
            }
        }
        return BAD_VALUE;
    }

    nsecs_t computeNextRefresh(int periodOffset, nsecs_t now) const {
        Mutex::Autolock lock(mMutex);
        return computeNextRefreshLocked(periodOffset, now);
    }

private:
    struct EventListener {
        const char* mName;
        nsecs_t mPhase;
        nsecs_t mLastEventTime;
        nsecs_t mLastCallbackTime;
        DispSync::Callback* mCallback;
    };

    struct CallbackInvocation {
        DispSync::Callback* mCallback;
        nsecs_t mEventTime;
        nsecs_t mExpectedVSyncTime;
    };

    nsecs_t computeNextEventTimeLocked(nsecs_t now) {
        if (mTraceDetailedInfo) ATRACE_CALL();
        ALOGV("[%s] computeNextEventTimeLocked", mName);
        nsecs_t nextEventTime = INT64_MAX;
        for (size_t i = 0; i < mEventListeners.size(); i++) {
            nsecs_t t = computeListenerNextEventTimeLocked(mEventListeners[i], now);

            if (t < nextEventTime) {
                nextEventTime = t;
            }
        }

        ALOGV("[%s] nextEventTime = %" PRId64, mName, ns2us(nextEventTime));
        return nextEventTime;
    }

    // Sanity check that the duration is close enough in length to a period without
    // falling into double-rate vsyncs.
    bool isCloseToPeriod(nsecs_t duration) {
        // Ratio of 3/5 is arbitrary, but it must be greater than 1/2.
        return duration < (3 * mPeriod) / 5;
    }

    std::vector<CallbackInvocation> gatherCallbackInvocationsLocked(nsecs_t now,
                                                                    nsecs_t expectedVSyncTime) {
        if (mTraceDetailedInfo) ATRACE_CALL();
        ALOGV("[%s] gatherCallbackInvocationsLocked @ %" PRId64, mName, ns2us(now));

        std::vector<CallbackInvocation> callbackInvocations;
        nsecs_t onePeriodAgo = now - mPeriod;

        for (auto& eventListener : mEventListeners) {
            nsecs_t t = computeListenerNextEventTimeLocked(eventListener, onePeriodAgo);

            if (t < now) {
                if (isCloseToPeriod(now - eventListener.mLastCallbackTime)) {
                    eventListener.mLastEventTime = t;
                    ALOGV("[%s] [%s] Skipping event due to model error", mName,
                          eventListener.mName);
                    continue;
                }

                CallbackInvocation ci;
                ci.mCallback = eventListener.mCallback;
                ci.mEventTime = t;
                ci.mExpectedVSyncTime = expectedVSyncTime;
                if (eventListener.mPhase < 0) {
                    ci.mExpectedVSyncTime += mPeriod;
                }
                ALOGV("[%s] [%s] Preparing to fire, latency: %" PRId64, mName, eventListener.mName,
                      t - eventListener.mLastEventTime);
                callbackInvocations.push_back(ci);
                eventListener.mLastEventTime = t;
                eventListener.mLastCallbackTime = now;
            }
        }

        return callbackInvocations;
    }

    nsecs_t computeListenerNextEventTimeLocked(const EventListener& listener, nsecs_t baseTime) {
        if (mTraceDetailedInfo) ATRACE_CALL();
        ALOGV("[%s] [%s] computeListenerNextEventTimeLocked(%" PRId64 ")", mName, listener.mName,
              ns2us(baseTime));

        nsecs_t lastEventTime = listener.mLastEventTime + mWakeupLatency;
        ALOGV("[%s] lastEventTime: %" PRId64, mName, ns2us(lastEventTime));
        if (baseTime < lastEventTime) {
            baseTime = lastEventTime;
            ALOGV("[%s] Clamping baseTime to lastEventTime -> %" PRId64, mName, ns2us(baseTime));
        }

        baseTime -= mReferenceTime;
        ALOGV("[%s] Relative baseTime = %" PRId64, mName, ns2us(baseTime));
        nsecs_t phase = mPhase + listener.mPhase;
        ALOGV("[%s] Phase = %" PRId64, mName, ns2us(phase));
        baseTime -= phase;
        ALOGV("[%s] baseTime - phase = %" PRId64, mName, ns2us(baseTime));

        // If our previous time is before the reference (because the reference
        // has since been updated), the division by mPeriod will truncate
        // towards zero instead of computing the floor. Since in all cases
        // before the reference we want the next time to be effectively now, we
        // set baseTime to -mPeriod so that numPeriods will be -1.
        // When we add 1 and the phase, we will be at the correct event time for
        // this period.
        if (baseTime < 0) {
            ALOGV("[%s] Correcting negative baseTime", mName);
            baseTime = -mPeriod;
        }

        nsecs_t numPeriods = baseTime / mPeriod;
        ALOGV("[%s] numPeriods = %" PRId64, mName, numPeriods);
        nsecs_t t = (numPeriods + 1) * mPeriod + phase;
        ALOGV("[%s] t = %" PRId64, mName, ns2us(t));
        t += mReferenceTime;
        ALOGV("[%s] Absolute t = %" PRId64, mName, ns2us(t));

        // Check that it's been slightly more than half a period since the last
        // event so that we don't accidentally fall into double-rate vsyncs
        if (isCloseToPeriod(t - listener.mLastEventTime)) {
            t += mPeriod;
            ALOGV("[%s] Modifying t -> %" PRId64, mName, ns2us(t));
        }

        t -= mWakeupLatency;
        ALOGV("[%s] Corrected for wakeup latency -> %" PRId64, mName, ns2us(t));

        return t;
    }

    void fireCallbackInvocations(const std::vector<CallbackInvocation>& callbacks) {
        if (mTraceDetailedInfo) ATRACE_CALL();
        for (size_t i = 0; i < callbacks.size(); i++) {
            callbacks[i].mCallback->onDispSyncEvent(callbacks[i].mEventTime,
                                                    callbacks[i].mExpectedVSyncTime);
        }
    }

    nsecs_t computeNextRefreshLocked(int periodOffset, nsecs_t now) const {
        nsecs_t phase = mReferenceTime + mPhase;
        if (mPeriod == 0) {
            return 0;
        }
        return (((now - phase) / mPeriod) + periodOffset + 1) * mPeriod + phase;
    }

    const char* const mName;

    bool mStop;
    TracedOrdinal<bool> mModelLocked;

    nsecs_t mPeriod;
    nsecs_t mPhase;
    nsecs_t mReferenceTime;
    nsecs_t mWakeupLatency;

    int64_t mFrameNumber;

    std::vector<EventListener> mEventListeners;

    mutable Mutex mMutex;
    Condition mCond;

    // Flag to turn on logging in systrace.
    const bool mTraceDetailedInfo;
};

#undef LOG_TAG
#define LOG_TAG "DispSync"

class ZeroPhaseTracer : public DispSync::Callback {
public:
    ZeroPhaseTracer() : mParity("ZERO_PHASE_VSYNC", false) {}

    virtual void onDispSyncEvent(nsecs_t /*when*/, nsecs_t /*expectedVSyncTimestamp*/) {
        mParity = !mParity;
    }

private:
    TracedOrdinal<bool> mParity;
};

DispSync::DispSync(const char* name, bool hasSyncFramework)
      : mName(name), mIgnorePresentFences(!hasSyncFramework) {
    // This flag offers the ability to turn on systrace logging from the shell.
    char value[PROPERTY_VALUE_MAX];
    property_get("debug.sf.dispsync_trace_detailed_info", value, "0");
    mTraceDetailedInfo = atoi(value);

    mThread = new DispSyncThread(name, mTraceDetailedInfo);
    mThread->run("DispSync", PRIORITY_URGENT_DISPLAY + PRIORITY_MORE_FAVORABLE);

    // set DispSync to SCHED_FIFO to minimize jitter
    struct sched_param param = {0};
    param.sched_priority = 2;
    if (sched_setscheduler(mThread->getTid(), SCHED_FIFO, &param) != 0) {
        ALOGE("Couldn't set SCHED_FIFO for DispSyncThread");
    }

    beginResync();

    if (mTraceDetailedInfo && kEnableZeroPhaseTracer) {
        mZeroPhaseTracer = std::make_unique<ZeroPhaseTracer>();
        addEventListener("ZeroPhaseTracer", 0, mZeroPhaseTracer.get(), 0);
    }
}

DispSync::~DispSync() {
    mThread->stop();
    mThread->requestExitAndWait();
}

void DispSync::reset() {
    Mutex::Autolock lock(mMutex);
    resetLocked();
}

void DispSync::resetLocked() {
    mPhase = 0;
    const size_t lastSampleIdx = (mFirstResyncSample + mNumResyncSamples - 1) % MAX_RESYNC_SAMPLES;
    // Keep the most recent sample, when we resync to hardware we'll overwrite this
    // with a more accurate signal
    if (mResyncSamples[lastSampleIdx] != 0) {
        mReferenceTime = mResyncSamples[lastSampleIdx];
    }
    mModelUpdated = false;
    for (size_t i = 0; i < MAX_RESYNC_SAMPLES; i++) {
        mResyncSamples[i] = 0;
    }
    mNumResyncSamples = 0;
    mFirstResyncSample = 0;
    mNumResyncSamplesSincePresent = 0;
    mThread->unlockModel();
    resetErrorLocked();
}

bool DispSync::addPresentFence(const std::shared_ptr<FenceTime>& fenceTime) {
    Mutex::Autolock lock(mMutex);

    if (mIgnorePresentFences) {
        return true;
    }

    mPresentFences[mPresentSampleOffset] = fenceTime;
    mPresentSampleOffset = (mPresentSampleOffset + 1) % NUM_PRESENT_SAMPLES;
    mNumResyncSamplesSincePresent = 0;

    updateErrorLocked();

    return !mModelUpdated || mError > kErrorThreshold;
}

void DispSync::beginResync() {
    Mutex::Autolock lock(mMutex);
    ALOGV("[%s] beginResync", mName);
    resetLocked();
}

bool DispSync::addResyncSample(nsecs_t timestamp, std::optional<nsecs_t> /*hwcVsyncPeriod*/,
                               bool* periodFlushed) {
    Mutex::Autolock lock(mMutex);

    ALOGV("[%s] addResyncSample(%" PRId64 ")", mName, ns2us(timestamp));

    *periodFlushed = false;
    const size_t idx = (mFirstResyncSample + mNumResyncSamples) % MAX_RESYNC_SAMPLES;
    mResyncSamples[idx] = timestamp;
    if (mNumResyncSamples == 0) {
        mPhase = 0;
        ALOGV("[%s] First resync sample: mPeriod = %" PRId64 ", mPhase = 0, "
              "mReferenceTime = %" PRId64,
              mName, ns2us(mPeriod), ns2us(timestamp));
    } else if (mPendingPeriod > 0) {
        // mNumResyncSamples > 0, so priorIdx won't overflow
        const size_t priorIdx = (mFirstResyncSample + mNumResyncSamples - 1) % MAX_RESYNC_SAMPLES;
        const nsecs_t lastTimestamp = mResyncSamples[priorIdx];

        const nsecs_t observedVsync = std::abs(timestamp - lastTimestamp);
        if (std::abs(observedVsync - mPendingPeriod) <= std::abs(observedVsync - mIntendedPeriod)) {
            // Either the observed vsync is closer to the pending period, (and
            // thus we detected a period change), or the period change will
            // no-op. In either case, reset the model and flush the pending
            // period.
            resetLocked();
            mIntendedPeriod = mPendingPeriod;
            mPeriod = mPendingPeriod;
            mPendingPeriod = 0;
            if (mTraceDetailedInfo) {
                ATRACE_INT("DispSync:PendingPeriod", mPendingPeriod);
                ATRACE_INT("DispSync:IntendedPeriod", mIntendedPeriod);
            }
            *periodFlushed = true;
        }
    }
    // Always update the reference time with the most recent timestamp.
    mReferenceTime = timestamp;
    mThread->updateModel(mPeriod, mPhase, mReferenceTime);

    if (mNumResyncSamples < MAX_RESYNC_SAMPLES) {
        mNumResyncSamples++;
    } else {
        mFirstResyncSample = (mFirstResyncSample + 1) % MAX_RESYNC_SAMPLES;
    }

    updateModelLocked();

    if (mNumResyncSamplesSincePresent++ > MAX_RESYNC_SAMPLES_WITHOUT_PRESENT) {
        resetErrorLocked();
    }

    if (mIgnorePresentFences) {
        // If we're ignoring the present fences we have no way to know whether
        // or not we're synchronized with the HW vsyncs, so we just request
        // that the HW vsync events be turned on.
        return true;
    }

    // Check against kErrorThreshold / 2 to add some hysteresis before having to
    // resync again
    bool modelLocked = mModelUpdated && mError < (kErrorThreshold / 2) && mPendingPeriod == 0;
    ALOGV("[%s] addResyncSample returning %s", mName, modelLocked ? "locked" : "unlocked");
    if (modelLocked) {
        *periodFlushed = true;
        mThread->lockModel();
    }
    return !modelLocked;
}

void DispSync::endResync() {
    mThread->lockModel();
}

status_t DispSync::addEventListener(const char* name, nsecs_t phase, Callback* callback,
                                    nsecs_t lastCallbackTime) {
    Mutex::Autolock lock(mMutex);
    return mThread->addEventListener(name, phase, callback, lastCallbackTime);
}

status_t DispSync::removeEventListener(Callback* callback, nsecs_t* outLastCallbackTime) {
    Mutex::Autolock lock(mMutex);
    return mThread->removeEventListener(callback, outLastCallbackTime);
}

status_t DispSync::changePhaseOffset(Callback* callback, nsecs_t phase) {
    Mutex::Autolock lock(mMutex);
    return mThread->changePhaseOffset(callback, phase);
}

void DispSync::setPeriod(nsecs_t period) {
    Mutex::Autolock lock(mMutex);

    const bool pendingPeriodShouldChange =
            period != mIntendedPeriod || (period == mIntendedPeriod && mPendingPeriod != 0);

    if (pendingPeriodShouldChange) {
        mPendingPeriod = period;
    }
    if (mTraceDetailedInfo) {
        ATRACE_INT("DispSync:IntendedPeriod", mIntendedPeriod);
        ATRACE_INT("DispSync:PendingPeriod", mPendingPeriod);
    }
}

nsecs_t DispSync::getPeriod() {
    // lock mutex as mPeriod changes multiple times in updateModelLocked
    Mutex::Autolock lock(mMutex);
    return mPeriod;
}

void DispSync::updateModelLocked() {
    ALOGV("[%s] updateModelLocked %zu", mName, mNumResyncSamples);
    if (mNumResyncSamples >= MIN_RESYNC_SAMPLES_FOR_UPDATE) {
        ALOGV("[%s] Computing...", mName);
        nsecs_t durationSum = 0;
        nsecs_t minDuration = INT64_MAX;
        nsecs_t maxDuration = 0;
        // We skip the first 2 samples because the first vsync duration on some
        // devices may be much more inaccurate than on other devices, e.g. due
        // to delays in ramping up from a power collapse. By doing so this
        // actually increases the accuracy of the DispSync model even though
        // we're effectively relying on fewer sample points.
        static constexpr size_t numSamplesSkipped = 2;
        for (size_t i = numSamplesSkipped; i < mNumResyncSamples; i++) {
            size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES;
            size_t prev = (idx + MAX_RESYNC_SAMPLES - 1) % MAX_RESYNC_SAMPLES;
            nsecs_t duration = mResyncSamples[idx] - mResyncSamples[prev];
            durationSum += duration;
            minDuration = min(minDuration, duration);
            maxDuration = max(maxDuration, duration);
        }

        // Exclude the min and max from the average
        durationSum -= minDuration + maxDuration;
        mPeriod = durationSum / (mNumResyncSamples - numSamplesSkipped - 2);

        ALOGV("[%s] mPeriod = %" PRId64, mName, ns2us(mPeriod));

        double sampleAvgX = 0;
        double sampleAvgY = 0;
        double scale = 2.0 * M_PI / double(mPeriod);
        for (size_t i = numSamplesSkipped; i < mNumResyncSamples; i++) {
            size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES;
            nsecs_t sample = mResyncSamples[idx] - mReferenceTime;
            double samplePhase = double(sample % mPeriod) * scale;
            sampleAvgX += cos(samplePhase);
            sampleAvgY += sin(samplePhase);
        }

        sampleAvgX /= double(mNumResyncSamples - numSamplesSkipped);
        sampleAvgY /= double(mNumResyncSamples - numSamplesSkipped);

        mPhase = nsecs_t(atan2(sampleAvgY, sampleAvgX) / scale);

        ALOGV("[%s] mPhase = %" PRId64, mName, ns2us(mPhase));

        if (mPhase < -(mPeriod / 2)) {
            mPhase += mPeriod;
            ALOGV("[%s] Adjusting mPhase -> %" PRId64, mName, ns2us(mPhase));
        }

        mThread->updateModel(mPeriod, mPhase, mReferenceTime);
        mModelUpdated = true;
    }
}

void DispSync::updateErrorLocked() {
    if (!mModelUpdated) {
        return;
    }

    int numErrSamples = 0;
    nsecs_t sqErrSum = 0;

    for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
        // Only check for the cached value of signal time to avoid unecessary
        // syscalls. It is the responsibility of the DispSync owner to
        // call getSignalTime() periodically so the cache is updated when the
        // fence signals.
        nsecs_t time = mPresentFences[i]->getCachedSignalTime();
        if (time == Fence::SIGNAL_TIME_PENDING || time == Fence::SIGNAL_TIME_INVALID) {
            continue;
        }

        nsecs_t sample = time - mReferenceTime;
        if (sample <= mPhase) {
            continue;
        }

        nsecs_t sampleErr = (sample - mPhase) % mPeriod;
        if (sampleErr > mPeriod / 2) {
            sampleErr -= mPeriod;
        }
        sqErrSum += sampleErr * sampleErr;
        numErrSamples++;
    }

    if (numErrSamples > 0) {
        mError = sqErrSum / numErrSamples;
        mZeroErrSamplesCount = 0;
    } else {
        mError = 0;
        // Use mod ACCEPTABLE_ZERO_ERR_SAMPLES_COUNT to avoid log spam.
        mZeroErrSamplesCount++;
        ALOGE_IF((mZeroErrSamplesCount % ACCEPTABLE_ZERO_ERR_SAMPLES_COUNT) == 0,
                 "No present times for model error.");
    }

    if (mTraceDetailedInfo) {
        ATRACE_INT64("DispSync:Error", mError);
    }
}

void DispSync::resetErrorLocked() {
    mPresentSampleOffset = 0;
    mError = 0;
    mZeroErrSamplesCount = 0;
    if (mTraceDetailedInfo) {
        ATRACE_INT64("DispSync:Error", mError);
    }
    for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
        mPresentFences[i] = FenceTime::NO_FENCE;
    }
}

nsecs_t DispSync::computeNextRefresh(int periodOffset, nsecs_t now) const {
    Mutex::Autolock lock(mMutex);
    nsecs_t phase = mReferenceTime + mPhase;
    if (mPeriod == 0) {
        return 0;
    }
    return (((now - phase) / mPeriod) + periodOffset + 1) * mPeriod + phase;
}

void DispSync::setIgnorePresentFences(bool ignore) {
    Mutex::Autolock lock(mMutex);
    if (mIgnorePresentFences != ignore) {
        mIgnorePresentFences = ignore;
        resetLocked();
    }
}

void DispSync::dump(std::string& result) const {
    Mutex::Autolock lock(mMutex);
    StringAppendF(&result, "present fences are %s\n", mIgnorePresentFences ? "ignored" : "used");
    StringAppendF(&result, "mPeriod: %" PRId64 " ns (%.3f fps)\n", mPeriod, 1000000000.0 / mPeriod);
    StringAppendF(&result, "mPhase: %" PRId64 " ns\n", mPhase);
    StringAppendF(&result, "mError: %" PRId64 " ns (sqrt=%.1f)\n", mError, sqrt(mError));
    StringAppendF(&result, "mNumResyncSamplesSincePresent: %d (limit %d)\n",
                  mNumResyncSamplesSincePresent, MAX_RESYNC_SAMPLES_WITHOUT_PRESENT);
    StringAppendF(&result, "mNumResyncSamples: %zd (max %d)\n", mNumResyncSamples,
                  MAX_RESYNC_SAMPLES);

    result.append("mResyncSamples:\n");
    nsecs_t previous = -1;
    for (size_t i = 0; i < mNumResyncSamples; i++) {
        size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES;
        nsecs_t sampleTime = mResyncSamples[idx];
        if (i == 0) {
            StringAppendF(&result, "  %" PRId64 "\n", sampleTime);
        } else {
            StringAppendF(&result, "  %" PRId64 " (+%" PRId64 ")\n", sampleTime,
                          sampleTime - previous);
        }
        previous = sampleTime;
    }

    StringAppendF(&result, "mPresentFences [%d]:\n", NUM_PRESENT_SAMPLES);
    nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
    previous = Fence::SIGNAL_TIME_INVALID;
    for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
        size_t idx = (i + mPresentSampleOffset) % NUM_PRESENT_SAMPLES;
        nsecs_t presentTime = mPresentFences[idx]->getSignalTime();
        if (presentTime == Fence::SIGNAL_TIME_PENDING) {
            StringAppendF(&result, "  [unsignaled fence]\n");
        } else if (presentTime == Fence::SIGNAL_TIME_INVALID) {
            StringAppendF(&result, "  [invalid fence]\n");
        } else if (previous == Fence::SIGNAL_TIME_PENDING ||
                   previous == Fence::SIGNAL_TIME_INVALID) {
            StringAppendF(&result, "  %" PRId64 "  (%.3f ms ago)\n", presentTime,
                          (now - presentTime) / 1000000.0);
        } else {
            StringAppendF(&result, "  %" PRId64 " (+%" PRId64 " / %.3f)  (%.3f ms ago)\n",
                          presentTime, presentTime - previous,
                          (presentTime - previous) / (double)mPeriod,
                          (now - presentTime) / 1000000.0);
        }
        previous = presentTime;
    }

    StringAppendF(&result, "current monotonic time: %" PRId64 "\n", now);
}

nsecs_t DispSync::expectedPresentTime(nsecs_t now) {
    // The HWC doesn't currently have a way to report additional latency.
    // Assume that whatever we submit now will appear right after the flip.
    // For a smart panel this might be 1.  This is expressed in frames,
    // rather than time, because we expect to have a constant frame delay
    // regardless of the refresh rate.
    const uint32_t hwcLatency = 0;

    // Ask DispSync when the next refresh will be (CLOCK_MONOTONIC).
    return mThread->computeNextRefresh(hwcLatency, now);
}

} // namespace impl

} // namespace android

// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic pop // ignored "-Wconversion"