summaryrefslogtreecommitdiff
path: root/services/surfaceflinger/Scheduler/VSyncPredictor.cpp
blob: 77782e9c723d05d44d18bf2271a8c0197252bd33 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
/*
 * Copyright 2019 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wextra"

#undef LOG_TAG
#define LOG_TAG "VSyncPredictor"

#define ATRACE_TAG ATRACE_TAG_GRAPHICS

#include <algorithm>
#include <chrono>
#include <sstream>

#include <android-base/logging.h>
#include <android-base/stringprintf.h>
#include <cutils/compiler.h>
#include <cutils/properties.h>
#include <utils/Log.h>
#include <utils/Trace.h>

#include "RefreshRateConfigs.h"
#include "VSyncPredictor.h"

namespace android::scheduler {

using base::StringAppendF;

static auto constexpr kMaxPercent = 100u;

VSyncPredictor::~VSyncPredictor() = default;

VSyncPredictor::VSyncPredictor(nsecs_t idealPeriod, size_t historySize,
                               size_t minimumSamplesForPrediction, uint32_t outlierTolerancePercent)
      : mTraceOn(property_get_bool("debug.sf.vsp_trace", true)),
        kHistorySize(historySize),
        kMinimumSamplesForPrediction(minimumSamplesForPrediction),
        kOutlierTolerancePercent(std::min(outlierTolerancePercent, kMaxPercent)),
        mIdealPeriod(idealPeriod) {
    resetModel();
}

inline void VSyncPredictor::traceInt64If(const char* name, int64_t value) const {
    if (CC_UNLIKELY(mTraceOn)) {
        ATRACE_INT64(name, value);
    }
}

inline size_t VSyncPredictor::next(size_t i) const {
    return (i + 1) % mTimestamps.size();
}

bool VSyncPredictor::validate(nsecs_t timestamp) const {
    if (mLastTimestampIndex < 0 || mTimestamps.empty()) {
        return true;
    }

    auto const aValidTimestamp = mTimestamps[mLastTimestampIndex];
    auto const percent = (timestamp - aValidTimestamp) % mIdealPeriod * kMaxPercent / mIdealPeriod;
    if (percent >= kOutlierTolerancePercent &&
        percent <= (kMaxPercent - kOutlierTolerancePercent)) {
        return false;
    }

    const auto iter = std::min_element(mTimestamps.begin(), mTimestamps.end(),
                                       [timestamp](nsecs_t a, nsecs_t b) {
                                           return std::abs(timestamp - a) < std::abs(timestamp - b);
                                       });
    const auto distancePercent = std::abs(*iter - timestamp) * kMaxPercent / mIdealPeriod;
    if (distancePercent < kOutlierTolerancePercent) {
        // duplicate timestamp
        return false;
    }
    return true;
}

nsecs_t VSyncPredictor::currentPeriod() const {
    std::lock_guard lock(mMutex);
    return mRateMap.find(mIdealPeriod)->second.slope;
}

bool VSyncPredictor::addVsyncTimestamp(nsecs_t timestamp) {
    std::lock_guard lock(mMutex);

    if (!validate(timestamp)) {
        // VSR could elect to ignore the incongruent timestamp or resetModel(). If ts is ignored,
        // don't insert this ts into mTimestamps ringbuffer. If we are still
        // in the learning phase we should just clear all timestamps and start
        // over.
        if (mTimestamps.size() < kMinimumSamplesForPrediction) {
            // Add the timestamp to mTimestamps before clearing it so we could
            // update mKnownTimestamp based on the new timestamp.
            mTimestamps.push_back(timestamp);
            clearTimestamps();
        } else if (!mTimestamps.empty()) {
            mKnownTimestamp =
                    std::max(timestamp, *std::max_element(mTimestamps.begin(), mTimestamps.end()));
        } else {
            mKnownTimestamp = timestamp;
        }
        return false;
    }

    if (mTimestamps.size() != kHistorySize) {
        mTimestamps.push_back(timestamp);
        mLastTimestampIndex = next(mLastTimestampIndex);
    } else {
        mLastTimestampIndex = next(mLastTimestampIndex);
        mTimestamps[mLastTimestampIndex] = timestamp;
    }

    const size_t numSamples = mTimestamps.size();
    if (numSamples < kMinimumSamplesForPrediction) {
        mRateMap[mIdealPeriod] = {mIdealPeriod, 0};
        return true;
    }

    // This is a 'simple linear regression' calculation of Y over X, with Y being the
    // vsync timestamps, and X being the ordinal of vsync count.
    // The calculated slope is the vsync period.
    // Formula for reference:
    // Sigma_i: means sum over all timestamps.
    // mean(variable): statistical mean of variable.
    // X: snapped ordinal of the timestamp
    // Y: vsync timestamp
    //
    //         Sigma_i( (X_i - mean(X)) * (Y_i - mean(Y) )
    // slope = -------------------------------------------
    //         Sigma_i ( X_i - mean(X) ) ^ 2
    //
    // intercept = mean(Y) - slope * mean(X)
    //
    std::vector<nsecs_t> vsyncTS(numSamples);
    std::vector<nsecs_t> ordinals(numSamples);

    // Normalizing to the oldest timestamp cuts down on error in calculating the intercept.
    const auto oldestTS = *std::min_element(mTimestamps.begin(), mTimestamps.end());
    auto it = mRateMap.find(mIdealPeriod);
    auto const currentPeriod = it->second.slope;

    // The mean of the ordinals must be precise for the intercept calculation, so scale them up for
    // fixed-point arithmetic.
    constexpr int64_t kScalingFactor = 1000;

    nsecs_t meanTS = 0;
    nsecs_t meanOrdinal = 0;

    for (size_t i = 0; i < numSamples; i++) {
        traceInt64If("VSP-ts", mTimestamps[i]);

        const auto timestamp = mTimestamps[i] - oldestTS;
        vsyncTS[i] = timestamp;
        meanTS += timestamp;

        const auto ordinal = (vsyncTS[i] + currentPeriod / 2) / currentPeriod * kScalingFactor;
        ordinals[i] = ordinal;
        meanOrdinal += ordinal;
    }

    meanTS /= numSamples;
    meanOrdinal /= numSamples;

    for (size_t i = 0; i < numSamples; i++) {
        vsyncTS[i] -= meanTS;
        ordinals[i] -= meanOrdinal;
    }

    nsecs_t top = 0;
    nsecs_t bottom = 0;
    for (size_t i = 0; i < numSamples; i++) {
        top += vsyncTS[i] * ordinals[i];
        bottom += ordinals[i] * ordinals[i];
    }

    if (CC_UNLIKELY(bottom == 0)) {
        it->second = {mIdealPeriod, 0};
        clearTimestamps();
        return false;
    }

    nsecs_t const anticipatedPeriod = top * kScalingFactor / bottom;
    nsecs_t const intercept = meanTS - (anticipatedPeriod * meanOrdinal / kScalingFactor);

    auto const percent = std::abs(anticipatedPeriod - mIdealPeriod) * kMaxPercent / mIdealPeriod;
    if (percent >= kOutlierTolerancePercent) {
        it->second = {mIdealPeriod, 0};
        clearTimestamps();
        return false;
    }

    traceInt64If("VSP-period", anticipatedPeriod);
    traceInt64If("VSP-intercept", intercept);

    it->second = {anticipatedPeriod, intercept};

    ALOGV("model update ts: %" PRId64 " slope: %" PRId64 " intercept: %" PRId64, timestamp,
          anticipatedPeriod, intercept);
    return true;
}

nsecs_t VSyncPredictor::nextAnticipatedVSyncTimeFromLocked(nsecs_t timePoint) const {
    auto const [slope, intercept] = getVSyncPredictionModelLocked();

    if (mTimestamps.empty()) {
        traceInt64If("VSP-mode", 1);
        auto const knownTimestamp = mKnownTimestamp ? *mKnownTimestamp : timePoint;
        auto const numPeriodsOut = ((timePoint - knownTimestamp) / mIdealPeriod) + 1;
        return knownTimestamp + numPeriodsOut * mIdealPeriod;
    }

    auto const oldest = *std::min_element(mTimestamps.begin(), mTimestamps.end());

    // See b/145667109, the ordinal calculation must take into account the intercept.
    auto const zeroPoint = oldest + intercept;
    auto const ordinalRequest = (timePoint - zeroPoint + slope) / slope;
    auto const prediction = (ordinalRequest * slope) + intercept + oldest;

    traceInt64If("VSP-mode", 0);
    traceInt64If("VSP-timePoint", timePoint);
    traceInt64If("VSP-prediction", prediction);

    auto const printer = [&, slope = slope, intercept = intercept] {
        std::stringstream str;
        str << "prediction made from: " << timePoint << "prediction: " << prediction << " (+"
            << prediction - timePoint << ") slope: " << slope << " intercept: " << intercept
            << "oldestTS: " << oldest << " ordinal: " << ordinalRequest;
        return str.str();
    };

    ALOGV("%s", printer().c_str());
    LOG_ALWAYS_FATAL_IF(prediction < timePoint, "VSyncPredictor: model miscalculation: %s",
                        printer().c_str());

    return prediction;
}

nsecs_t VSyncPredictor::nextAnticipatedVSyncTimeFrom(nsecs_t timePoint) const {
    std::lock_guard lock(mMutex);
    return nextAnticipatedVSyncTimeFromLocked(timePoint);
}

/*
 * Returns whether a given vsync timestamp is in phase with a frame rate.
 * If the frame rate is not a divisor of the refresh rate, it is always considered in phase.
 * For example, if the vsync timestamps are (16.6,33.3,50.0,66.6):
 * isVSyncInPhase(16.6, 30) = true
 * isVSyncInPhase(33.3, 30) = false
 * isVSyncInPhase(50.0, 30) = true
 */
bool VSyncPredictor::isVSyncInPhase(nsecs_t timePoint, Fps frameRate) const {
    struct VsyncError {
        nsecs_t vsyncTimestamp;
        float error;

        bool operator<(const VsyncError& other) const { return error < other.error; }
    };

    std::lock_guard lock(mMutex);
    const auto divisor =
            RefreshRateConfigs::getFrameRateDivisor(Fps::fromPeriodNsecs(mIdealPeriod), frameRate);
    if (divisor <= 1 || timePoint == 0) {
        return true;
    }

    const nsecs_t period = mRateMap[mIdealPeriod].slope;
    const nsecs_t justBeforeTimePoint = timePoint - period / 2;
    const nsecs_t dividedPeriod = mIdealPeriod / divisor;

    // If this is the first time we have asked about this divisor with the
    // current vsync period, it is considered in phase and we store the closest
    // vsync timestamp
    const auto knownTimestampIter = mRateDivisorKnownTimestampMap.find(dividedPeriod);
    if (knownTimestampIter == mRateDivisorKnownTimestampMap.end()) {
        const auto vsync = nextAnticipatedVSyncTimeFromLocked(justBeforeTimePoint);
        mRateDivisorKnownTimestampMap[dividedPeriod] = vsync;
        return true;
    }

    // Find the next N vsync timestamp where N is the divisor.
    // One of these vsyncs will be in phase. We return the one which is
    // the most aligned with the last known in phase vsync
    std::vector<VsyncError> vsyncs(static_cast<size_t>(divisor));
    const nsecs_t knownVsync = knownTimestampIter->second;
    nsecs_t point = justBeforeTimePoint;
    for (size_t i = 0; i < divisor; i++) {
        const nsecs_t vsync = nextAnticipatedVSyncTimeFromLocked(point);
        const auto numPeriods = static_cast<float>(vsync - knownVsync) / (period * divisor);
        const auto error = std::abs(std::round(numPeriods) - numPeriods);
        vsyncs[i] = {vsync, error};
        point = vsync + 1;
    }

    const auto minVsyncError = std::min_element(vsyncs.begin(), vsyncs.end());
    mRateDivisorKnownTimestampMap[dividedPeriod] = minVsyncError->vsyncTimestamp;
    return std::abs(minVsyncError->vsyncTimestamp - timePoint) < period / 2;
}

VSyncPredictor::Model VSyncPredictor::getVSyncPredictionModel() const {
    std::lock_guard lock(mMutex);
    const auto model = VSyncPredictor::getVSyncPredictionModelLocked();
    return {model.slope, model.intercept};
}

VSyncPredictor::Model VSyncPredictor::getVSyncPredictionModelLocked() const {
    return mRateMap.find(mIdealPeriod)->second;
}

void VSyncPredictor::setPeriod(nsecs_t period) {
    ATRACE_CALL();

    std::lock_guard lock(mMutex);
    static constexpr size_t kSizeLimit = 30;
    if (CC_UNLIKELY(mRateMap.size() == kSizeLimit)) {
        mRateMap.erase(mRateMap.begin());
    }

    mIdealPeriod = period;
    if (mRateMap.find(period) == mRateMap.end()) {
        mRateMap[mIdealPeriod] = {period, 0};
    }

    clearTimestamps();
}

void VSyncPredictor::clearTimestamps() {
    if (!mTimestamps.empty()) {
        auto const maxRb = *std::max_element(mTimestamps.begin(), mTimestamps.end());
        if (mKnownTimestamp) {
            mKnownTimestamp = std::max(*mKnownTimestamp, maxRb);
        } else {
            mKnownTimestamp = maxRb;
        }

        mTimestamps.clear();
        mLastTimestampIndex = 0;
    }
}

bool VSyncPredictor::needsMoreSamples() const {
    std::lock_guard lock(mMutex);
    return mTimestamps.size() < kMinimumSamplesForPrediction;
}

void VSyncPredictor::resetModel() {
    std::lock_guard lock(mMutex);
    mRateMap[mIdealPeriod] = {mIdealPeriod, 0};
    clearTimestamps();
}

void VSyncPredictor::dump(std::string& result) const {
    std::lock_guard lock(mMutex);
    StringAppendF(&result, "\tmIdealPeriod=%.2f\n", mIdealPeriod / 1e6f);
    StringAppendF(&result, "\tRefresh Rate Map:\n");
    for (const auto& [idealPeriod, periodInterceptTuple] : mRateMap) {
        StringAppendF(&result,
                      "\t\tFor ideal period %.2fms: period = %.2fms, intercept = %" PRId64 "\n",
                      idealPeriod / 1e6f, periodInterceptTuple.slope / 1e6f,
                      periodInterceptTuple.intercept);
    }
}

} // namespace android::scheduler

// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic pop // ignored "-Wextra"