/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ANDROID_HARDWARE_KEYMASTER_DEFS_H #define ANDROID_HARDWARE_KEYMASTER_DEFS_H #include #include #include #ifdef __cplusplus extern "C" { #endif // __cplusplus /** * Authorization tags each have an associated type. This enumeration facilitates tagging each with * a type, by using the high four bits (of an implied 32-bit unsigned enum value) to specify up to * 16 data types. These values are ORed with tag IDs to generate the final tag ID values. */ typedef enum { KM_INVALID = 0 << 28, /* Invalid type, used to designate a tag as uninitialized */ KM_ENUM = 1 << 28, KM_ENUM_REP = 2 << 28, /* Repeatable enumeration value. */ KM_UINT = 3 << 28, KM_UINT_REP = 4 << 28, /* Repeatable integer value */ KM_ULONG = 5 << 28, KM_DATE = 6 << 28, KM_BOOL = 7 << 28, KM_BIGNUM = 8 << 28, KM_BYTES = 9 << 28, KM_ULONG_REP = 10 << 28, /* Repeatable long value */ } keymaster_tag_type_t; typedef enum { KM_TAG_INVALID = KM_INVALID | 0, /* * Tags that must be semantically enforced by hardware and software implementations. */ /* Crypto parameters */ KM_TAG_PURPOSE = KM_ENUM_REP | 1, /* keymaster_purpose_t. */ KM_TAG_ALGORITHM = KM_ENUM | 2, /* keymaster_algorithm_t. */ KM_TAG_KEY_SIZE = KM_UINT | 3, /* Key size in bits. */ KM_TAG_BLOCK_MODE = KM_ENUM_REP | 4, /* keymaster_block_mode_t. */ KM_TAG_DIGEST = KM_ENUM_REP | 5, /* keymaster_digest_t. */ KM_TAG_PADDING = KM_ENUM_REP | 6, /* keymaster_padding_t. */ KM_TAG_CALLER_NONCE = KM_BOOL | 7, /* Allow caller to specify nonce or IV. */ KM_TAG_MIN_MAC_LENGTH = KM_UINT | 8, /* Minimum length of MAC or AEAD authentication tag in * bits. */ KM_TAG_KDF = KM_ENUM_REP | 9, /* keymaster_kdf_t (keymaster2) */ KM_TAG_EC_CURVE = KM_ENUM | 10, /* keymaster_ec_curve_t (keymaster2) */ /* Algorithm-specific. */ KM_TAG_RSA_PUBLIC_EXPONENT = KM_ULONG | 200, KM_TAG_ECIES_SINGLE_HASH_MODE = KM_BOOL | 201, /* Whether the ephemeral public key is fed into * the KDF */ KM_TAG_INCLUDE_UNIQUE_ID = KM_BOOL | 202, /* If true, attestation certificates for this key * will contain an application-scoped and * time-bounded device-unique ID. (keymaster2) */ KM_TAG_RSA_OAEP_MGF_DIGEST = KM_ENUM_REP | 203, /* keymaster_digest_t. */ /* Other hardware-enforced. */ KM_TAG_BLOB_USAGE_REQUIREMENTS = KM_ENUM | 301, /* keymaster_key_blob_usage_requirements_t */ KM_TAG_BOOTLOADER_ONLY = KM_BOOL | 302, /* Usable only by bootloader */ KM_TAG_ROLLBACK_RESISTANCE = KM_BOOL | 303, /* Hardware enforced deletion with deleteKey * or deleteAllKeys is supported */ KM_TAG_EARLY_BOOT_ONLY = KM_BOOL | 305, /* Key can only be used during early boot. */ /* * Tags that should be semantically enforced by hardware if possible and will otherwise be * enforced by software (keystore). */ /* Key validity period */ KM_TAG_ACTIVE_DATETIME = KM_DATE | 400, /* Start of validity */ KM_TAG_ORIGINATION_EXPIRE_DATETIME = KM_DATE | 401, /* Date when new "messages" should no longer be created. */ KM_TAG_USAGE_EXPIRE_DATETIME = KM_DATE | 402, /* Date when existing "messages" should no longer be trusted. */ KM_TAG_MIN_SECONDS_BETWEEN_OPS = KM_UINT | 403, /* Minimum elapsed time between cryptographic operations with the key. */ KM_TAG_MAX_USES_PER_BOOT = KM_UINT | 404, /* Number of times the key can be used per boot. */ KM_TAG_USAGE_COUNT_LIMIT = KM_UINT | 405, /* Number of cryptographic operations left with the key.*/ /* User authentication */ KM_TAG_ALL_USERS = KM_BOOL | 500, /* Reserved for future use -- ignore */ KM_TAG_USER_ID = KM_UINT | 501, /* Reserved for future use -- ignore */ KM_TAG_USER_SECURE_ID = KM_ULONG_REP | 502, /* Secure ID of authorized user or authenticator(s). Disallowed if KM_TAG_ALL_USERS or KM_TAG_NO_AUTH_REQUIRED is present. */ KM_TAG_NO_AUTH_REQUIRED = KM_BOOL | 503, /* If key is usable without authentication. */ KM_TAG_USER_AUTH_TYPE = KM_ENUM | 504, /* Bitmask of authenticator types allowed when * KM_TAG_USER_SECURE_ID contains a secure user ID, * rather than a secure authenticator ID. Defined in * hw_authenticator_type_t in hw_auth_token.h. */ KM_TAG_AUTH_TIMEOUT = KM_UINT | 505, /* Required freshness of user authentication for private/secret key operations, in seconds. Public key operations require no authentication. If absent, authentication is required for every use. Authentication state is lost when the device is powered off. */ KM_TAG_ALLOW_WHILE_ON_BODY = KM_BOOL | 506, /* Allow key to be used after authentication timeout * if device is still on-body (requires secure * on-body sensor. */ KM_TAG_TRUSTED_USER_PRESENCE_REQUIRED = KM_BOOL | 507,/* Require test of user presence * to use this key. */ KM_TAG_TRUSTED_CONFIRMATION_REQUIRED = KM_BOOL | 508, /* Require user confirmation through a * trusted UI to use this key. */ KM_TAG_UNLOCKED_DEVICE_REQUIRED = KM_BOOL | 509, /* Require the device screen to be unlocked if the * key is used. */ /* Application access control */ KM_TAG_ALL_APPLICATIONS = KM_BOOL | 600, /* Specified to indicate key is usable by all * applications. */ KM_TAG_APPLICATION_ID = KM_BYTES | 601, /* Byte string identifying the authorized * application. */ KM_TAG_EXPORTABLE = KM_BOOL | 602, /* If true, private/secret key can be exported, but * only if all access control requirements for use are * met. (keymaster2) */ /* * Semantically unenforceable tags, either because they have no specific meaning or because * they're informational only. */ KM_TAG_APPLICATION_DATA = KM_BYTES | 700, /* Data provided by authorized application. */ KM_TAG_CREATION_DATETIME = KM_DATE | 701, /* Key creation time */ KM_TAG_ORIGIN = KM_ENUM | 702, /* keymaster_key_origin_t. */ KM_TAG_ROLLBACK_RESISTANT = KM_BOOL | 703, /* Whether key is rollback-resistant. */ KM_TAG_ROOT_OF_TRUST = KM_BYTES | 704, /* Root of trust ID. */ KM_TAG_OS_VERSION = KM_UINT | 705, /* Version of system (keymaster2) */ KM_TAG_OS_PATCHLEVEL = KM_UINT | 706, /* Patch level of system (keymaster2) */ KM_TAG_UNIQUE_ID = KM_BYTES | 707, /* Used to provide unique ID in attestation */ KM_TAG_ATTESTATION_CHALLENGE = KM_BYTES | 708, /* Used to provide challenge in attestation */ KM_TAG_ATTESTATION_APPLICATION_ID = KM_BYTES | 709, /* Used to identify the set of possible * applications of which one has initiated * a key attestation */ KM_TAG_ATTESTATION_ID_BRAND = KM_BYTES | 710, /* Used to provide the device's brand name to be included in attestation */ KM_TAG_ATTESTATION_ID_DEVICE = KM_BYTES | 711, /* Used to provide the device's device name to be included in attestation */ KM_TAG_ATTESTATION_ID_PRODUCT = KM_BYTES | 712, /* Used to provide the device's product name to be included in attestation */ KM_TAG_ATTESTATION_ID_SERIAL = KM_BYTES | 713, /* Used to provide the device's serial number to be included in attestation */ KM_TAG_ATTESTATION_ID_IMEI = KM_BYTES | 714, /* Used to provide the device's IMEI to be included in attestation */ KM_TAG_ATTESTATION_ID_MEID = KM_BYTES | 715, /* Used to provide the device's MEID to be included in attestation */ KM_TAG_ATTESTATION_ID_MANUFACTURER = KM_BYTES | 716, /* Used to provide the device's manufacturer name to be included in attestation */ KM_TAG_ATTESTATION_ID_MODEL = KM_BYTES | 717, /* Used to provide the device's model name to be included in attestation */ KM_TAG_VENDOR_PATCHLEVEL = KM_UINT | 718, /* specifies the vendor image security patch level with which the key may be used */ KM_TAG_BOOT_PATCHLEVEL = KM_UINT | 719, /* specifies the boot image (kernel) security patch level with which the key may be used */ KM_TAG_DEVICE_UNIQUE_ATTESTATION = KM_BOOL | 720, /* Indicates StrongBox device-unique attestation is requested. */ KM_TAG_IDENTITY_CREDENTIAL_KEY = KM_BOOL | 721, /* This is an identity credential key */ KM_TAG_STORAGE_KEY = KM_BOOL | 722, /* storage encryption key */ KM_TAG_ATTESTATION_ID_SECOND_IMEI = KM_BYTES | 723, /* Used to provide the device's second IMEI to be included in attestation */ /* Tags used only to provide data to or receive data from operations */ KM_TAG_ASSOCIATED_DATA = KM_BYTES | 1000, /* Used to provide associated data for AEAD modes. */ KM_TAG_NONCE = KM_BYTES | 1001, /* Nonce or Initialization Vector */ KM_TAG_AUTH_TOKEN = KM_BYTES | 1002, /* Authentication token that proves secure user authentication has been performed. Structure defined in hw_auth_token_t in hw_auth_token.h. */ KM_TAG_MAC_LENGTH = KM_UINT | 1003, /* MAC or AEAD authentication tag length in * bits. */ KM_TAG_RESET_SINCE_ID_ROTATION = KM_BOOL | 1004, /* Whether the device has beeen factory reset since the last unique ID rotation. Used for key attestation. */ KM_TAG_CONFIRMATION_TOKEN = KM_BYTES | 1005, /* used to deliver a cryptographic token proving that the user confirmed a signing request. */ KM_TAG_CERTIFICATE_SERIAL = KM_BIGNUM | 1006, /* The serial number that should be set in the attestation certificate to be generated. */ KM_TAG_CERTIFICATE_SUBJECT = KM_BYTES | 1007, /* A DER-encoded X.500 subject that should be set in the attestation certificate to be generated. */ KM_TAG_CERTIFICATE_NOT_BEFORE = KM_DATE | 1008, /* Epoch time in milliseconds of the start of the to be generated certificate's validity. The value should interpreted as too's complement signed integer. Negative values indicate dates before Jan 1970 */ KM_TAG_CERTIFICATE_NOT_AFTER = KM_DATE | 1009, /* Epoch time in milliseconds of the end of the to be generated certificate's validity. The value should interpreted as too's complement signed integer. Negative values indicate dates before Jan 1970 */ KM_TAG_MAX_BOOT_LEVEL = KM_UINT | 1010, /* Specifies a maximum boot level at which a key should function. */ } keymaster_tag_t; /** * Algorithms that may be provided by keymaster implementations. Those that must be provided by all * implementations are tagged as "required". */ typedef enum { /* Asymmetric algorithms. */ KM_ALGORITHM_RSA = 1, // KM_ALGORITHM_DSA = 2, -- Removed, do not re-use value 2. KM_ALGORITHM_EC = 3, /* Block ciphers algorithms */ KM_ALGORITHM_AES = 32, KM_ALGORITHM_TRIPLE_DES = 33, /* MAC algorithms */ KM_ALGORITHM_HMAC = 128, } keymaster_algorithm_t; /** * Symmetric block cipher modes provided by keymaster implementations. */ typedef enum { /* Unauthenticated modes, usable only for encryption/decryption and not generally recommended * except for compatibility with existing other protocols. */ KM_MODE_ECB = 1, KM_MODE_CBC = 2, KM_MODE_CTR = 3, /* Authenticated modes, usable for encryption/decryption and signing/verification. Recommended * over unauthenticated modes for all purposes. */ KM_MODE_GCM = 32, } keymaster_block_mode_t; /** * Padding modes that may be applied to plaintext for encryption operations. This list includes * padding modes for both symmetric and asymmetric algorithms. Note that implementations should not * provide all possible combinations of algorithm and padding, only the * cryptographically-appropriate pairs. */ typedef enum { KM_PAD_NONE = 1, /* deprecated */ KM_PAD_RSA_OAEP = 2, KM_PAD_RSA_PSS = 3, KM_PAD_RSA_PKCS1_1_5_ENCRYPT = 4, KM_PAD_RSA_PKCS1_1_5_SIGN = 5, KM_PAD_PKCS7 = 64, } keymaster_padding_t; /** * Digests provided by keymaster implementations. */ typedef enum { KM_DIGEST_NONE = 0, KM_DIGEST_MD5 = 1, /* Optional, may not be implemented in hardware, will be handled in software * if needed. */ KM_DIGEST_SHA1 = 2, KM_DIGEST_SHA_2_224 = 3, KM_DIGEST_SHA_2_256 = 4, KM_DIGEST_SHA_2_384 = 5, KM_DIGEST_SHA_2_512 = 6, } keymaster_digest_t; /* * Key derivation functions, mostly used in ECIES. */ typedef enum { /* Do not apply a key derivation function; use the raw agreed key */ KM_KDF_NONE = 0, /* HKDF defined in RFC 5869 with SHA256 */ KM_KDF_RFC5869_SHA256 = 1, /* KDF1 defined in ISO 18033-2 with SHA1 */ KM_KDF_ISO18033_2_KDF1_SHA1 = 2, /* KDF1 defined in ISO 18033-2 with SHA256 */ KM_KDF_ISO18033_2_KDF1_SHA256 = 3, /* KDF2 defined in ISO 18033-2 with SHA1 */ KM_KDF_ISO18033_2_KDF2_SHA1 = 4, /* KDF2 defined in ISO 18033-2 with SHA256 */ KM_KDF_ISO18033_2_KDF2_SHA256 = 5, } keymaster_kdf_t; /** * Supported EC curves, used in ECDSA/ECIES. */ typedef enum { KM_EC_CURVE_P_224 = 0, KM_EC_CURVE_P_256 = 1, KM_EC_CURVE_P_384 = 2, KM_EC_CURVE_P_521 = 3, KM_EC_CURVE_CURVE_25519 = 4, } keymaster_ec_curve_t; /** * The origin of a key (or pair), i.e. where it was generated. Note that KM_TAG_ORIGIN can be found * in either the hardware-enforced or software-enforced list for a key, indicating whether the key * is hardware or software-based. Specifically, a key with KM_ORIGIN_GENERATED in the * hardware-enforced list is guaranteed never to have existed outide the secure hardware. */ typedef enum { KM_ORIGIN_GENERATED = 0, /* Generated in keymaster. Should not exist outside the TEE. */ KM_ORIGIN_DERIVED = 1, /* Derived inside keymaster. Likely exists off-device. */ KM_ORIGIN_IMPORTED = 2, /* Imported into keymaster. Existed as cleartext in Android. */ KM_ORIGIN_UNKNOWN = 3, /* Keymaster did not record origin. This value can only be seen on * keys in a keymaster0 implementation. The keymaster0 adapter uses * this value to document the fact that it is unkown whether the key * was generated inside or imported into keymaster. */ } keymaster_key_origin_t; /** * Usability requirements of key blobs. This defines what system functionality must be available * for the key to function. For example, key "blobs" which are actually handles referencing * encrypted key material stored in the file system cannot be used until the file system is * available, and should have BLOB_REQUIRES_FILE_SYSTEM. Other requirements entries will be added * as needed for implementations. */ typedef enum { KM_BLOB_STANDALONE = 0, KM_BLOB_REQUIRES_FILE_SYSTEM = 1, } keymaster_key_blob_usage_requirements_t; /** * Possible purposes of a key (or pair). */ typedef enum { KM_PURPOSE_ENCRYPT = 0, /* Usable with RSA, EC and AES keys. */ KM_PURPOSE_DECRYPT = 1, /* Usable with RSA, EC and AES keys. */ KM_PURPOSE_SIGN = 2, /* Usable with RSA, EC and HMAC keys. */ KM_PURPOSE_VERIFY = 3, /* Usable with RSA, EC and HMAC keys. */ KM_PURPOSE_DERIVE_KEY = 4, /* Usable with EC keys. */ KM_PURPOSE_WRAP = 5, /* Usable with wrapped keys. */ KM_PURPOSE_AGREE_KEY = 6, /* Usable with EC keys. */ KM_PURPOSE_ATTEST_KEY = 7 /* Usabe with RSA and EC keys */ } keymaster_purpose_t; typedef struct { const uint8_t* data; size_t data_length; } keymaster_blob_t; typedef struct { keymaster_tag_t tag; union { uint32_t enumerated; /* KM_ENUM and KM_ENUM_REP */ bool boolean; /* KM_BOOL */ uint32_t integer; /* KM_INT and KM_INT_REP */ uint64_t long_integer; /* KM_LONG */ uint64_t date_time; /* KM_DATE */ keymaster_blob_t blob; /* KM_BIGNUM and KM_BYTES*/ }; } keymaster_key_param_t; typedef struct { keymaster_key_param_t* params; /* may be NULL if length == 0 */ size_t length; } keymaster_key_param_set_t; /** * Parameters that define a key's characteristics, including authorized modes of usage and access * control restrictions. The parameters are divided into two categories, those that are enforced by * secure hardware, and those that are not. For a software-only keymaster implementation the * enforced array must NULL. Hardware implementations must enforce everything in the enforced * array. */ typedef struct { keymaster_key_param_set_t hw_enforced; keymaster_key_param_set_t sw_enforced; } keymaster_key_characteristics_t; typedef struct { const uint8_t* key_material; size_t key_material_size; } keymaster_key_blob_t; typedef struct { keymaster_blob_t* entries; size_t entry_count; } keymaster_cert_chain_t; typedef enum { KM_VERIFIED_BOOT_VERIFIED = 0, /* Full chain of trust extending from the bootloader to * verified partitions, including the bootloader, boot * partition, and all verified partitions*/ KM_VERIFIED_BOOT_SELF_SIGNED = 1, /* The boot partition has been verified using the embedded * certificate, and the signature is valid. The bootloader * displays a warning and the fingerprint of the public * key before allowing the boot process to continue.*/ KM_VERIFIED_BOOT_UNVERIFIED = 2, /* The device may be freely modified. Device integrity is left * to the user to verify out-of-band. The bootloader * displays a warning to the user before allowing the boot * process to continue */ KM_VERIFIED_BOOT_FAILED = 3, /* The device failed verification. The bootloader displays a * warning and stops the boot process, so no keymaster * implementation should ever actually return this value, * since it should not run. Included here only for * completeness. */ } keymaster_verified_boot_t; typedef enum { KM_SECURITY_LEVEL_SOFTWARE = 0, KM_SECURITY_LEVEL_TRUSTED_ENVIRONMENT = 1, KM_SECURITY_LEVEL_STRONGBOX = 2, } keymaster_security_level_t; /** * Formats for key import and export. */ typedef enum { KM_KEY_FORMAT_X509 = 0, /* for public key export */ KM_KEY_FORMAT_PKCS8 = 1, /* for asymmetric key pair import */ KM_KEY_FORMAT_RAW = 3, /* for symmetric key import and export*/ } keymaster_key_format_t; /** * The keymaster operation API consists of begin, update, finish and abort. This is the type of the * handle used to tie the sequence of calls together. A 64-bit value is used because it's important * that handles not be predictable. Implementations must use strong random numbers for handle * values. */ typedef uint64_t keymaster_operation_handle_t; typedef enum { KM_ERROR_OK = 0, KM_ERROR_ROOT_OF_TRUST_ALREADY_SET = -1, KM_ERROR_UNSUPPORTED_PURPOSE = -2, KM_ERROR_INCOMPATIBLE_PURPOSE = -3, KM_ERROR_UNSUPPORTED_ALGORITHM = -4, KM_ERROR_INCOMPATIBLE_ALGORITHM = -5, KM_ERROR_UNSUPPORTED_KEY_SIZE = -6, KM_ERROR_UNSUPPORTED_BLOCK_MODE = -7, KM_ERROR_INCOMPATIBLE_BLOCK_MODE = -8, KM_ERROR_UNSUPPORTED_MAC_LENGTH = -9, KM_ERROR_UNSUPPORTED_PADDING_MODE = -10, KM_ERROR_INCOMPATIBLE_PADDING_MODE = -11, KM_ERROR_UNSUPPORTED_DIGEST = -12, KM_ERROR_INCOMPATIBLE_DIGEST = -13, KM_ERROR_INVALID_EXPIRATION_TIME = -14, KM_ERROR_INVALID_USER_ID = -15, KM_ERROR_INVALID_AUTHORIZATION_TIMEOUT = -16, KM_ERROR_UNSUPPORTED_KEY_FORMAT = -17, KM_ERROR_INCOMPATIBLE_KEY_FORMAT = -18, KM_ERROR_UNSUPPORTED_KEY_ENCRYPTION_ALGORITHM = -19, /* For PKCS8 & PKCS12 */ KM_ERROR_UNSUPPORTED_KEY_VERIFICATION_ALGORITHM = -20, /* For PKCS8 & PKCS12 */ KM_ERROR_INVALID_INPUT_LENGTH = -21, KM_ERROR_KEY_EXPORT_OPTIONS_INVALID = -22, KM_ERROR_DELEGATION_NOT_ALLOWED = -23, KM_ERROR_KEY_NOT_YET_VALID = -24, KM_ERROR_KEY_EXPIRED = -25, KM_ERROR_KEY_USER_NOT_AUTHENTICATED = -26, KM_ERROR_OUTPUT_PARAMETER_NULL = -27, KM_ERROR_INVALID_OPERATION_HANDLE = -28, KM_ERROR_INSUFFICIENT_BUFFER_SPACE = -29, KM_ERROR_VERIFICATION_FAILED = -30, KM_ERROR_TOO_MANY_OPERATIONS = -31, KM_ERROR_UNEXPECTED_NULL_POINTER = -32, KM_ERROR_INVALID_KEY_BLOB = -33, KM_ERROR_IMPORTED_KEY_NOT_ENCRYPTED = -34, KM_ERROR_IMPORTED_KEY_DECRYPTION_FAILED = -35, KM_ERROR_IMPORTED_KEY_NOT_SIGNED = -36, KM_ERROR_IMPORTED_KEY_VERIFICATION_FAILED = -37, KM_ERROR_INVALID_ARGUMENT = -38, KM_ERROR_UNSUPPORTED_TAG = -39, KM_ERROR_INVALID_TAG = -40, KM_ERROR_MEMORY_ALLOCATION_FAILED = -41, KM_ERROR_IMPORT_PARAMETER_MISMATCH = -44, KM_ERROR_SECURE_HW_ACCESS_DENIED = -45, KM_ERROR_OPERATION_CANCELLED = -46, KM_ERROR_CONCURRENT_ACCESS_CONFLICT = -47, KM_ERROR_SECURE_HW_BUSY = -48, KM_ERROR_SECURE_HW_COMMUNICATION_FAILED = -49, KM_ERROR_UNSUPPORTED_EC_FIELD = -50, KM_ERROR_MISSING_NONCE = -51, KM_ERROR_INVALID_NONCE = -52, KM_ERROR_MISSING_MAC_LENGTH = -53, KM_ERROR_KEY_RATE_LIMIT_EXCEEDED = -54, KM_ERROR_CALLER_NONCE_PROHIBITED = -55, KM_ERROR_KEY_MAX_OPS_EXCEEDED = -56, KM_ERROR_INVALID_MAC_LENGTH = -57, KM_ERROR_MISSING_MIN_MAC_LENGTH = -58, KM_ERROR_UNSUPPORTED_MIN_MAC_LENGTH = -59, KM_ERROR_UNSUPPORTED_KDF = -60, KM_ERROR_UNSUPPORTED_EC_CURVE = -61, KM_ERROR_KEY_REQUIRES_UPGRADE = -62, KM_ERROR_ATTESTATION_CHALLENGE_MISSING = -63, KM_ERROR_KEYMASTER_NOT_CONFIGURED = -64, KM_ERROR_ATTESTATION_APPLICATION_ID_MISSING = -65, KM_ERROR_CANNOT_ATTEST_IDS = -66, KM_ERROR_ROLLBACK_RESISTANCE_UNAVAILABLE = -67, KM_ERROR_NO_USER_CONFIRMATION = -71, KM_ERROR_DEVICE_LOCKED = -72, KM_ERROR_EARLY_BOOT_ENDED = -73, KM_ERROR_ATTESTATION_KEYS_NOT_PROVISIONED = -74, KM_ERROR_ATTESTATION_IDS_NOT_PROVISIONED = -75, KM_ERROR_INCOMPATIBLE_MGF_DIGEST = -78, KM_ERROR_UNSUPPORTED_MGF_DIGEST = -79, KM_ERROR_MISSING_NOT_BEFORE = -80, KM_ERROR_MISSING_NOT_AFTER = -81, KM_ERROR_MISSING_ISSUER_SUBJECT = -82, KM_ERROR_INVALID_ISSUER_SUBJECT = -83, KM_ERROR_BOOT_LEVEL_EXCEEDED = -84, KM_ERROR_UNIMPLEMENTED = -100, KM_ERROR_VERSION_MISMATCH = -101, KM_ERROR_UNKNOWN_ERROR = -1000, } keymaster_error_t; /* Convenience functions for manipulating keymaster tag types */ static inline keymaster_tag_type_t keymaster_tag_get_type(keymaster_tag_t tag) { return (keymaster_tag_type_t)(tag & (0xF << 28)); } static inline uint32_t keymaster_tag_mask_type(keymaster_tag_t tag) { return tag & 0x0FFFFFFF; } static inline bool keymaster_tag_type_repeatable(keymaster_tag_type_t type) { switch (type) { case KM_UINT_REP: case KM_ENUM_REP: return true; default: return false; } } static inline bool keymaster_tag_repeatable(keymaster_tag_t tag) { return keymaster_tag_type_repeatable(keymaster_tag_get_type(tag)); } /* Convenience functions for manipulating keymaster_key_param_t structs */ inline keymaster_key_param_t keymaster_param_enum(keymaster_tag_t tag, uint32_t value) { // assert(keymaster_tag_get_type(tag) == KM_ENUM || keymaster_tag_get_type(tag) == KM_ENUM_REP); keymaster_key_param_t param; memset(¶m, 0, sizeof(param)); param.tag = tag; param.enumerated = value; return param; } inline keymaster_key_param_t keymaster_param_int(keymaster_tag_t tag, uint32_t value) { // assert(keymaster_tag_get_type(tag) == KM_INT || keymaster_tag_get_type(tag) == KM_INT_REP); keymaster_key_param_t param; memset(¶m, 0, sizeof(param)); param.tag = tag; param.integer = value; return param; } inline keymaster_key_param_t keymaster_param_long(keymaster_tag_t tag, uint64_t value) { // assert(keymaster_tag_get_type(tag) == KM_LONG); keymaster_key_param_t param; memset(¶m, 0, sizeof(param)); param.tag = tag; param.long_integer = value; return param; } inline keymaster_key_param_t keymaster_param_blob(keymaster_tag_t tag, const uint8_t* bytes, size_t bytes_len) { // assert(keymaster_tag_get_type(tag) == KM_BYTES || keymaster_tag_get_type(tag) == KM_BIGNUM); keymaster_key_param_t param; memset(¶m, 0, sizeof(param)); param.tag = tag; param.blob.data = (uint8_t*)bytes; param.blob.data_length = bytes_len; return param; } inline keymaster_key_param_t keymaster_param_bool(keymaster_tag_t tag) { // assert(keymaster_tag_get_type(tag) == KM_BOOL); keymaster_key_param_t param; memset(¶m, 0, sizeof(param)); param.tag = tag; param.boolean = true; return param; } inline keymaster_key_param_t keymaster_param_date(keymaster_tag_t tag, uint64_t value) { // assert(keymaster_tag_get_type(tag) == KM_DATE); keymaster_key_param_t param; memset(¶m, 0, sizeof(param)); param.tag = tag; param.date_time = value; return param; } #define KEYMASTER_SIMPLE_COMPARE(a, b) (a < b) ? -1 : ((a > b) ? 1 : 0) inline int keymaster_param_compare(const keymaster_key_param_t* a, const keymaster_key_param_t* b) { int retval = KEYMASTER_SIMPLE_COMPARE((uint32_t)a->tag, (uint32_t)b->tag); if (retval != 0) return retval; switch (keymaster_tag_get_type(a->tag)) { case KM_INVALID: case KM_BOOL: return 0; case KM_ENUM: case KM_ENUM_REP: return KEYMASTER_SIMPLE_COMPARE(a->enumerated, b->enumerated); case KM_UINT: case KM_UINT_REP: return KEYMASTER_SIMPLE_COMPARE(a->integer, b->integer); case KM_ULONG: case KM_ULONG_REP: return KEYMASTER_SIMPLE_COMPARE(a->long_integer, b->long_integer); case KM_DATE: return KEYMASTER_SIMPLE_COMPARE(a->date_time, b->date_time); case KM_BIGNUM: case KM_BYTES: // Handle the empty cases. if (a->blob.data_length != 0 && b->blob.data_length == 0) return -1; if (a->blob.data_length == 0 && b->blob.data_length == 0) return 0; if (a->blob.data_length == 0 && b->blob.data_length > 0) return 1; retval = memcmp(a->blob.data, b->blob.data, a->blob.data_length < b->blob.data_length ? a->blob.data_length : b->blob.data_length); if (retval != 0) return retval; else if (a->blob.data_length != b->blob.data_length) { // Equal up to the common length; longer one is larger. if (a->blob.data_length < b->blob.data_length) return -1; if (a->blob.data_length > b->blob.data_length) return 1; } } return 0; } #undef KEYMASTER_SIMPLE_COMPARE inline void keymaster_free_param_values(keymaster_key_param_t* param, size_t param_count) { while (param_count > 0) { param_count--; switch (keymaster_tag_get_type(param->tag)) { case KM_BIGNUM: case KM_BYTES: free((void*)param->blob.data); param->blob.data = NULL; break; default: // NOP break; } ++param; } } inline void keymaster_free_param_set(keymaster_key_param_set_t* set) { if (set) { keymaster_free_param_values(set->params, set->length); free(set->params); set->params = NULL; set->length = 0; } } inline void keymaster_free_characteristics(keymaster_key_characteristics_t* characteristics) { if (characteristics) { keymaster_free_param_set(&characteristics->hw_enforced); keymaster_free_param_set(&characteristics->sw_enforced); } } inline void keymaster_free_cert_chain(keymaster_cert_chain_t* chain) { if (chain) { for (size_t i = 0; i < chain->entry_count; ++i) { free((uint8_t*)chain->entries[i].data); chain->entries[i].data = NULL; chain->entries[i].data_length = 0; } free(chain->entries); chain->entries = NULL; chain->entry_count = 0; } } #ifdef __cplusplus } // extern "C" #endif // __cplusplus #endif // ANDROID_HARDWARE_KEYMASTER_DEFS_H