#include "fs.h" #include #include #include #include #include #include #include #ifndef _WIN32 #include #else #include #include #endif #include #include #include #include #include #include #include using android::base::GetExecutableDirectory; using android::base::StringPrintf; using android::base::unique_fd; #ifdef _WIN32 static int exec_cmd(const char* path, const char** argv, const char** envp) { std::string cmd; int i = 0; while (argv[i] != nullptr) { cmd += argv[i++]; cmd += " "; } cmd = cmd.substr(0, cmd.size() - 1); STARTUPINFO si; PROCESS_INFORMATION pi; DWORD exit_code = 0; ZeroMemory(&si, sizeof(si)); si.cb = sizeof(si); ZeroMemory(&pi, sizeof(pi)); std::string env_str; if (envp != nullptr) { while (*envp != nullptr) { env_str += std::string(*envp) + std::string("\0", 1); envp++; } } if (!CreateProcessA(nullptr, // No module name (use command line) const_cast(cmd.c_str()), // Command line nullptr, // Process handle not inheritable nullptr, // Thread handle not inheritable FALSE, // Set handle inheritance to FALSE 0, // No creation flags env_str.empty() ? nullptr : LPSTR(env_str.c_str()), nullptr, // Use parent's starting directory &si, // Pointer to STARTUPINFO structure &pi) // Pointer to PROCESS_INFORMATION structure ) { fprintf(stderr, "CreateProcess failed: %s\n", android::base::SystemErrorCodeToString(GetLastError()).c_str()); return -1; } WaitForSingleObject(pi.hProcess, INFINITE); GetExitCodeProcess(pi.hProcess, &exit_code); CloseHandle(pi.hProcess); CloseHandle(pi.hThread); if (exit_code != 0) { fprintf(stderr, "%s failed: %lu\n", path, exit_code); return -1; } return 0; } #else static int exec_cmd(const char* path, const char** argv, const char** envp) { int status; pid_t child; if ((child = fork()) == 0) { execve(path, const_cast(argv), const_cast(envp)); _exit(EXIT_FAILURE); } if (child < 0) { fprintf(stderr, "%s failed with fork %s\n", path, strerror(errno)); return -1; } if (TEMP_FAILURE_RETRY(waitpid(child, &status, 0)) == -1) { fprintf(stderr, "%s failed with waitpid %s\n", path, strerror(errno)); return -1; } int ret = -1; if (WIFEXITED(status)) { ret = WEXITSTATUS(status); } if (ret != 0) { fprintf(stderr, "%s failed with status %d\n", path, ret); return -1; } return 0; } #endif static int generate_ext4_image(const char* fileName, long long partSize, unsigned eraseBlkSize, unsigned logicalBlkSize, const unsigned fsOptions) { static constexpr int block_size = 4096; const std::string exec_dir = android::base::GetExecutableDirectory(); const std::string mke2fs_path = exec_dir + "/mke2fs"; std::vector mke2fs_args = {mke2fs_path.c_str(), "-t", "ext4", "-b"}; std::string block_size_str = std::to_string(block_size); mke2fs_args.push_back(block_size_str.c_str()); std::string ext_attr = "android_sparse"; if (eraseBlkSize != 0 && logicalBlkSize != 0) { int raid_stride = logicalBlkSize / block_size; int raid_stripe_width = eraseBlkSize / block_size; // stride should be the max of 8kb and logical block size if (logicalBlkSize != 0 && logicalBlkSize < 8192) raid_stride = 8192 / block_size; // stripe width should be >= stride if (raid_stripe_width < raid_stride) raid_stripe_width = raid_stride; ext_attr += StringPrintf(",stride=%d,stripe-width=%d", raid_stride, raid_stripe_width); } mke2fs_args.push_back("-E"); mke2fs_args.push_back(ext_attr.c_str()); mke2fs_args.push_back("-O"); mke2fs_args.push_back("uninit_bg"); if (fsOptions & (1 << FS_OPT_PROJID)) { mke2fs_args.push_back("-I"); mke2fs_args.push_back("512"); } if (fsOptions & (1 << FS_OPT_CASEFOLD)) { mke2fs_args.push_back("-O"); mke2fs_args.push_back("casefold"); mke2fs_args.push_back("-E"); mke2fs_args.push_back("encoding=utf8"); } mke2fs_args.push_back(fileName); std::string size_str = std::to_string(partSize / block_size); mke2fs_args.push_back(size_str.c_str()); mke2fs_args.push_back(nullptr); const std::string mke2fs_env = "MKE2FS_CONFIG=" + GetExecutableDirectory() + "/mke2fs.conf"; std::vector mke2fs_envp = {mke2fs_env.c_str(), nullptr}; int ret = exec_cmd(mke2fs_args[0], mke2fs_args.data(), mke2fs_envp.data()); if (ret != 0) { return -1; } return 0; } enum { // clang-format off FSCK_SUCCESS = 0, FSCK_ERROR_CORRECTED = 1 << 0, FSCK_SYSTEM_SHOULD_REBOOT = 1 << 1, FSCK_ERRORS_LEFT_UNCORRECTED = 1 << 2, FSCK_OPERATIONAL_ERROR = 1 << 3, FSCK_USAGE_OR_SYNTAX_ERROR = 1 << 4, FSCK_USER_CANCELLED = 1 << 5, FSCK_SHARED_LIB_ERROR = 1 << 7, // clang-format on }; static int generate_f2fs_image(const char* fileName, long long partSize, unsigned /* unused */, unsigned /* unused */, const unsigned fsOptions) { const std::string exec_dir = android::base::GetExecutableDirectory(); const std::string mkf2fs_path = exec_dir + "/make_f2fs"; std::vector mkf2fs_args = {mkf2fs_path.c_str()}; mkf2fs_args.push_back("-S"); std::string size_str = std::to_string(partSize); mkf2fs_args.push_back(size_str.c_str()); mkf2fs_args.push_back("-g"); mkf2fs_args.push_back("android"); if (fsOptions & (1 << FS_OPT_PROJID)) { mkf2fs_args.push_back("-O"); mkf2fs_args.push_back("project_quota,extra_attr"); } if (fsOptions & (1 << FS_OPT_CASEFOLD)) { mkf2fs_args.push_back("-O"); mkf2fs_args.push_back("casefold"); mkf2fs_args.push_back("-C"); mkf2fs_args.push_back("utf8"); } if (fsOptions & (1 << FS_OPT_COMPRESS)) { mkf2fs_args.push_back("-O"); mkf2fs_args.push_back("compression"); mkf2fs_args.push_back("-O"); mkf2fs_args.push_back("extra_attr"); } mkf2fs_args.push_back(fileName); mkf2fs_args.push_back(nullptr); int ret = exec_cmd(mkf2fs_args[0], mkf2fs_args.data(), nullptr); if (ret != 0) { return -1; } return 0; } static const struct fs_generator { const char* fs_type; //must match what fastboot reports for partition type //returns 0 or error value int (*generate)(const char* fileName, long long partSize, unsigned eraseBlkSize, unsigned logicalBlkSize, const unsigned fsOptions); } generators[] = { { "ext4", generate_ext4_image}, { "f2fs", generate_f2fs_image}, }; const struct fs_generator* fs_get_generator(const std::string& fs_type) { for (size_t i = 0; i < sizeof(generators) / sizeof(*generators); i++) { if (fs_type == generators[i].fs_type) { return generators + i; } } return nullptr; } int fs_generator_generate(const struct fs_generator* gen, const char* fileName, long long partSize, unsigned eraseBlkSize, unsigned logicalBlkSize, const unsigned fsOptions) { return gen->generate(fileName, partSize, eraseBlkSize, logicalBlkSize, fsOptions); }