/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "service_utils.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mount_namespace.h" #include "util.h" using android::base::GetProperty; using android::base::StartsWith; using android::base::StringPrintf; using android::base::unique_fd; using android::base::WriteStringToFile; namespace android { namespace init { namespace { Result EnterNamespace(int nstype, const char* path) { auto fd = unique_fd{open(path, O_RDONLY | O_CLOEXEC)}; if (fd == -1) { return ErrnoError() << "Could not open namespace at " << path; } if (setns(fd.get(), nstype) == -1) { return ErrnoError() << "Could not setns() namespace at " << path; } return {}; } Result SetUpMountNamespace(bool remount_proc, bool remount_sys) { constexpr unsigned int kSafeFlags = MS_NODEV | MS_NOEXEC | MS_NOSUID; // Recursively remount / as MS_SLAVE like zygote does so that // unmounting and mounting /proc doesn't interfere with the parent // namespace's /proc mount. This will also prevent any other // mounts/unmounts initiated by the service from interfering with the // parent namespace but will still allow mount events from the parent // namespace to propagate to the child. if (mount("rootfs", "/", nullptr, (MS_SLAVE | MS_REC), nullptr) == -1) { return ErrnoError() << "Could not remount(/) recursively as MS_SLAVE"; } // umount() then mount() /proc and/or /sys // Note that it is not sufficient to mount with MS_REMOUNT. if (remount_proc) { if (umount("/proc") == -1) { return ErrnoError() << "Could not umount(/proc)"; } if (mount("", "/proc", "proc", kSafeFlags, "") == -1) { return ErrnoError() << "Could not mount(/proc)"; } } if (remount_sys) { if (umount2("/sys", MNT_DETACH) == -1) { return ErrnoError() << "Could not umount(/sys)"; } if (mount("", "/sys", "sysfs", kSafeFlags, "") == -1) { return ErrnoError() << "Could not mount(/sys)"; } } return {}; } Result SetUpPidNamespace(const char* name) { if (prctl(PR_SET_NAME, name) == -1) { return ErrnoError() << "Could not set name"; } pid_t child_pid = fork(); if (child_pid == -1) { return ErrnoError() << "Could not fork init inside the PID namespace"; } if (child_pid > 0) { // So that we exit with the right status. static int init_exitstatus = 0; signal(SIGTERM, [](int) { _exit(init_exitstatus); }); pid_t waited_pid; int status; while ((waited_pid = wait(&status)) > 0) { // This loop will end when there are no processes left inside the // PID namespace or when the init process inside the PID namespace // gets a signal. if (waited_pid == child_pid) { init_exitstatus = status; } } if (!WIFEXITED(init_exitstatus)) { _exit(EXIT_FAILURE); } _exit(WEXITSTATUS(init_exitstatus)); } return {}; } void SetupStdio(bool stdio_to_kmsg) { auto fd = unique_fd{open("/dev/null", O_RDWR | O_CLOEXEC)}; dup2(fd.get(), STDIN_FILENO); if (stdio_to_kmsg) { fd.reset(open("/dev/kmsg_debug", O_WRONLY | O_CLOEXEC)); if (fd == -1) fd.reset(open("/dev/null", O_WRONLY | O_CLOEXEC)); } dup2(fd.get(), STDOUT_FILENO); dup2(fd.get(), STDERR_FILENO); } void OpenConsole(const std::string& console) { auto fd = unique_fd{open(console.c_str(), O_RDWR | O_CLOEXEC)}; if (fd == -1) fd.reset(open("/dev/null", O_RDWR | O_CLOEXEC)); ioctl(fd.get(), TIOCSCTTY, 0); dup2(fd.get(), 0); dup2(fd.get(), 1); dup2(fd.get(), 2); } } // namespace void Descriptor::Publish() const { auto published_name = name_; for (auto& c : published_name) { c = isalnum(c) ? c : '_'; } int fd = fd_.get(); // For safety, the FD is created as CLOEXEC, so that must be removed before publishing. auto fd_flags = fcntl(fd, F_GETFD); fd_flags &= ~FD_CLOEXEC; if (fcntl(fd, F_SETFD, fd_flags) != 0) { PLOG(ERROR) << "Failed to remove CLOEXEC from '" << published_name << "'"; } std::string val = std::to_string(fd); setenv(published_name.c_str(), val.c_str(), 1); } Result SocketDescriptor::Create(const std::string& global_context) const { const auto& socket_context = context.empty() ? global_context : context; auto result = CreateSocket(name, type | SOCK_CLOEXEC, passcred, listen, perm, uid, gid, socket_context); if (!result.ok()) { return result.error(); } return Descriptor(ANDROID_SOCKET_ENV_PREFIX + name, unique_fd(*result)); } Result FileDescriptor::Create() const { int flags = (type == "r") ? O_RDONLY : (type == "w") ? O_WRONLY : O_RDWR; // Make sure we do not block on open (eg: devices can chose to block on carrier detect). Our // intention is never to delay launch of a service for such a condition. The service can // perform its own blocking on carrier detect. unique_fd fd(TEMP_FAILURE_RETRY(open(name.c_str(), flags | O_NONBLOCK | O_CLOEXEC))); if (fd < 0) { return ErrnoError() << "Failed to open file '" << name << "'"; } // Fixup as we set O_NONBLOCK for open, the intent for fd is to block reads. fcntl(fd.get(), F_SETFL, flags); return Descriptor(ANDROID_FILE_ENV_PREFIX + name, std::move(fd)); } Result EnterNamespaces(const NamespaceInfo& info, const std::string& name, std::optional override_mount_namespace) { for (const auto& [nstype, path] : info.namespaces_to_enter) { if (auto result = EnterNamespace(nstype, path.c_str()); !result.ok()) { return result; } } #if defined(__ANDROID__) if (override_mount_namespace.has_value()) { if (auto result = SwitchToMountNamespaceIfNeeded(override_mount_namespace.value()); !result.ok()) { return result; } } #endif if (info.flags & CLONE_NEWNS) { bool remount_proc = info.flags & CLONE_NEWPID; bool remount_sys = std::any_of(info.namespaces_to_enter.begin(), info.namespaces_to_enter.end(), [](const auto& entry) { return entry.first == CLONE_NEWNET; }); if (auto result = SetUpMountNamespace(remount_proc, remount_sys); !result.ok()) { return result; } } if (info.flags & CLONE_NEWPID) { // This will fork again to run an init process inside the PID namespace. if (auto result = SetUpPidNamespace(name.c_str()); !result.ok()) { return result; } } return {}; } Result SetProcessAttributes(const ProcessAttributes& attr, InterprocessFifo setsid_finished) { if (attr.ioprio_class != IoSchedClass_NONE) { if (android_set_ioprio(getpid(), attr.ioprio_class, attr.ioprio_pri)) { PLOG(ERROR) << "failed to set pid " << getpid() << " ioprio=" << attr.ioprio_class << "," << attr.ioprio_pri; } } if (RequiresConsole(attr)) { setsid(); setsid_finished.Write(kSetSidFinished); setsid_finished.Close(); OpenConsole(attr.console); } else { // Without PID namespaces, this call duplicates the setpgid() call from // the parent process. With PID namespaces, this setpgid() call sets the // process group ID for a child of the init process in the PID // namespace. if (setpgid(0, 0) == -1) { return ErrnoError() << "setpgid failed"; } SetupStdio(attr.stdio_to_kmsg); } for (const auto& rlimit : attr.rlimits) { if (setrlimit(rlimit.first, &rlimit.second) == -1) { return ErrnoErrorf("setrlimit({}, {{rlim_cur={}, rlim_max={}}}) failed", rlimit.first, rlimit.second.rlim_cur, rlimit.second.rlim_max); } } if (attr.gid) { if (setgid(attr.gid) != 0) { return ErrnoError() << "setgid failed"; } } if (setgroups(attr.supp_gids.size(), const_cast(&attr.supp_gids[0])) != 0) { return ErrnoError() << "setgroups failed"; } if (attr.uid()) { if (setuid(attr.uid()) != 0) { return ErrnoError() << "setuid failed"; } } if (attr.priority != 0) { if (setpriority(PRIO_PROCESS, 0, attr.priority) != 0) { return ErrnoError() << "setpriority failed"; } } return {}; } Result WritePidToFiles(std::vector* files) { if (files->empty()) { // No files to write pid to, exit early. return {}; } if (!CgroupsAvailable()) { return Error() << "cgroups are not available"; } // See if there were "writepid" instructions to write to files under cpuset path. std::string cpuset_path; if (CgroupGetControllerPath("cpuset", &cpuset_path)) { auto cpuset_predicate = [&cpuset_path](const std::string& path) { return StartsWith(path, cpuset_path + "/"); }; auto iter = std::find_if(files->begin(), files->end(), cpuset_predicate); if (iter == files->end()) { // There were no "writepid" instructions for cpusets, check if the system default // cpuset is specified to be used for the process. std::string default_cpuset = GetProperty("ro.cpuset.default", ""); if (!default_cpuset.empty()) { // Make sure the cpuset name starts and ends with '/'. // A single '/' means the 'root' cpuset. if (default_cpuset.front() != '/') { default_cpuset.insert(0, 1, '/'); } if (default_cpuset.back() != '/') { default_cpuset.push_back('/'); } files->push_back( StringPrintf("%s%stasks", cpuset_path.c_str(), default_cpuset.c_str())); } } } else { LOG(ERROR) << "cpuset cgroup controller is not mounted!"; } // Issue a warning whenever writepid is being used with a cgroup. This can't be done during // command parsing because cgroups might not be configured at the time or parsing. for (const auto& file : *files) { if (CgroupGetControllerFromPath(file, nullptr)) { LOG(WARNING) << "writepid usage with cgroups path '" << file << "' is obsolete, please use task_profiles!"; } } std::string pid_str = std::to_string(getpid()); for (const auto& file : *files) { if (!WriteStringToFile(pid_str, file)) { return ErrnoError() << "couldn't write " << pid_str << " to " << file; } } return {}; } } // namespace init } // namespace android