summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorChristopher Ferris <cferris@google.com>2013-02-15 12:27:58 -0800
committerChristopher Ferris <cferris@google.com>2013-02-15 12:57:44 -0800
commit82ac1af86d8ca3b7a42af9ca02e4d0b556681bc8 (patch)
treeb158589bd5325d11fe556bbebb91618957c59ead
parent261e0f9c260cd708e6b7e6f98a35ee9d31ebc01c (diff)
downloadextras-82ac1af86d8ca3b7a42af9ca02e4d0b556681bc8.tar.gz
Update micro_bench.
Moving the code to cpp to access the cpuset CPU* macros (these macros are defined in sched.h inside of __USE_GNU which is not defined for the thumb C compiler). The C++ code is also slightly easier to read. Add code to set the priority of the process to the highest value. Add code to lock the process to a single cpu. Add the ability to compute average and standard deviation over a number of iterations. Change the timing code to use nanosecond resolution timing. Add options to allow modification of the alignment of the src/dst pointers for memcpy and the dst pointer for memset. Add an option to change the size of the data being copied in each iteration. Change-Id: Ib7c50ed4463f94e638eb81690fe8fe0d0bc3ea80
-rw-r--r--micro_bench/Android.mk2
-rw-r--r--micro_bench/micro_bench.c201
-rw-r--r--micro_bench/micro_bench.cpp484
3 files changed, 485 insertions, 202 deletions
diff --git a/micro_bench/Android.mk b/micro_bench/Android.mk
index 0e819c37..09913ff9 100644
--- a/micro_bench/Android.mk
+++ b/micro_bench/Android.mk
@@ -1,7 +1,7 @@
LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)
-LOCAL_SRC_FILES := micro_bench.c
+LOCAL_SRC_FILES := micro_bench.cpp
LOCAL_MODULE_PATH := $(TARGET_OUT_OPTIONAL_EXECUTABLES)
LOCAL_MODULE_TAGS := debug
diff --git a/micro_bench/micro_bench.c b/micro_bench/micro_bench.c
deleted file mode 100644
index df6e1696..00000000
--- a/micro_bench/micro_bench.c
+++ /dev/null
@@ -1,201 +0,0 @@
-/*
-** Copyright 2010 The Android Open Source Project
-**
-** Licensed under the Apache License, Version 2.0 (the "License");
-** you may not use this file except in compliance with the License.
-** You may obtain a copy of the License at
-**
-** http://www.apache.org/licenses/LICENSE-2.0
-**
-** Unless required by applicable law or agreed to in writing, software
-** distributed under the License is distributed on an "AS IS" BASIS,
-** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-** See the License for the specific language governing permissions and
-** limitations under the License.
-*/
-
-/*
- * Some quick and dirty micro-benchmarks
- */
-
-#include <stdlib.h>
-#include <stdio.h>
-#include <errno.h>
-#include <sys/uio.h>
-#include <unistd.h>
-#include <sys/time.h>
-#include <stdint.h>
-#include <string.h>
-
-/* tv2 -= tv1 */
-static void tv_sub(struct timeval *tv2, struct timeval *tv1) {
- tv2->tv_sec -= tv1->tv_sec;
- tv2->tv_usec -= tv1->tv_usec;
- while (tv2->tv_usec < 0) {
- tv2->tv_usec += 1000000;
- tv2->tv_sec -= 1;
- }
-}
-
-static int do_sleep(int iters, int delay) {
- struct timeval tv1;
- struct timeval tv2;
- int i;
-
- for (i = 0; iters == -1 || i < iters; i++) {
- gettimeofday(&tv1, NULL);
- sleep(delay);
- gettimeofday(&tv2, NULL);
-
- tv_sub(&tv2, &tv1);
-
- printf("sleep(%d) took %ld.%06ld seconds\n", delay, tv2.tv_sec, tv2.tv_usec);
- }
-
- return 0;
-}
-
-int cpu_foo;
-
-static int do_cpu(int iters, int a) {
- struct timeval tv1;
- struct timeval tv2;
- int i;
-
- for (i = 0; iters == -1 || i < iters; i++) {
- gettimeofday(&tv1, NULL);
- for (cpu_foo = 0; cpu_foo < 100000000; cpu_foo++);
- gettimeofday(&tv2, NULL);
-
- tv_sub(&tv2, &tv1);
-
- printf("cpu took %ld.%06ld seconds\n", tv2.tv_sec, tv2.tv_usec);
- }
- return 0;
-}
-
-static double mb_sec(unsigned long bytes, struct timeval *delta) {
- unsigned long us = delta->tv_sec * 1000000 + delta->tv_usec;
- return (double)bytes * 1000000.0 / 1048576.0 / (double)us;
-}
-
-static int do_memset(int iters, int sz) {
- struct timeval tv1;
- struct timeval tv2;
- int i, j;
-
- uint8_t *b = malloc(sz);
- if (!b) return -1;
- int c = 1000000000/sz;
-
- for (i = 0; iters == -1 || i < iters; i++) {
- gettimeofday(&tv1, NULL);
- for (j = 0; j < c; j++)
- memset(b, 0, sz);
-
- gettimeofday(&tv2, NULL);
-
- tv_sub(&tv2, &tv1);
-
- printf("memset %dx%d bytes took %ld.%06ld seconds (%f MB/s)\n",
- c, sz, tv2.tv_sec, tv2.tv_usec, mb_sec(c*sz, &tv2));
- }
- return 0;
-}
-
-static int do_memcpy(int iters, int sz) {
- struct timeval tv1;
- struct timeval tv2;
- int i, j;
-
- uint8_t *a = malloc(sz);
- if (!a) return -1;
- uint8_t *b = malloc(sz);
- if (!b) return -1;
- int c = 1000000000/sz;
-
- for (i = 0; iters == -1 || i < iters; i++) {
- gettimeofday(&tv1, NULL);
- for (j = 0; j < c; j++)
- memcpy(b, a, sz);
-
- gettimeofday(&tv2, NULL);
-
- tv_sub(&tv2, &tv1);
-
- printf("memcpy %dx%d bytes took %ld.%06ld seconds (%f MB/s)\n",
- c, sz, tv2.tv_sec, tv2.tv_usec, mb_sec(c*sz, &tv2));
- }
- return 0;
-}
-
-int foo;
-
-static int do_memread(int iters, int sz) {
- struct timeval tv1;
- struct timeval tv2;
- int i, j, k;
-
- int *b = malloc(sz);
- if (!b) return -1;
- int c = 1000000000/sz;
-
- for (i = 0; iters == -1 || i < iters; i++) {
- gettimeofday(&tv1, NULL);
- for (j = 0; j < c; j++)
- for (k = 0; k < sz/4; k++)
- foo = b[k];
-
- gettimeofday(&tv2, NULL);
-
- tv_sub(&tv2, &tv1);
-
- printf("read %dx%d bytes took %ld.%06ld seconds (%f MB/s)\n",
- c, sz, tv2.tv_sec, tv2.tv_usec, mb_sec(c*sz, &tv2));
- }
- return 0;
-}
-
-struct {
- char *name;
- int (*ptr)(int, int);
-} function_table[] = {
- {"sleep", do_sleep},
- {"cpu", do_cpu},
- {"memset", do_memset},
- {"memcpy", do_memcpy},
- {"memread", do_memread},
- {NULL, NULL},
-};
-
-static void usage() {
- int i;
-
- printf("Usage:\n");
- for (i = 0; function_table[i].name; i++) {
- printf("\tmicro_bench %s ARG [ITERS]\n", function_table[i].name);
- }
-}
-
-int main(int argc, char **argv) {
- int i;
- int iters;
-
- if (argc < 3 || argc > 4) {
- usage();
- return -1;
- }
- if (argc == 3) {
- iters = -1;
- } else {
- iters = atoi(argv[3]);
- }
- for (i = 0; function_table[i].name; i++) {
- if (!strcmp(argv[1], function_table[i].name)) {
- printf("%s\n", function_table[i].name);
- return (*function_table[i].ptr)(iters, atoi(argv[2]));
- }
- }
- usage();
- return -1;
-}
diff --git a/micro_bench/micro_bench.cpp b/micro_bench/micro_bench.cpp
new file mode 100644
index 00000000..b8d82f6d
--- /dev/null
+++ b/micro_bench/micro_bench.cpp
@@ -0,0 +1,484 @@
+/*
+** Copyright 2010 The Android Open Source Project
+**
+** Licensed under the Apache License, Version 2.0 (the "License");
+** you may not use this file except in compliance with the License.
+** You may obtain a copy of the License at
+**
+** http://www.apache.org/licenses/LICENSE-2.0
+**
+** Unless required by applicable law or agreed to in writing, software
+** distributed under the License is distributed on an "AS IS" BASIS,
+** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+** See the License for the specific language governing permissions and
+** limitations under the License.
+*/
+
+/*
+ * Micro-benchmarking of sleep/cpu speed/memcpy/memset/memory reads.
+ */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <ctype.h>
+#include <math.h>
+#include <sched.h>
+#include <sys/resource.h>
+#include <time.h>
+#include <unistd.h>
+
+// The default size of data that will be manipulated in each iteration of
+// a memory benchmark. Can be modified with the --data_size option.
+#define DEFAULT_DATA_SIZE 1000000000
+
+// Number of nanoseconds in a second.
+#define NS_PER_SEC 1000000000
+
+// The maximum number of arguments that a benchmark will accept.
+#define MAX_ARGS 2
+
+// Use macros to compute values to try and avoid disturbing memory as much
+// as possible after each iteration.
+#define COMPUTE_AVERAGE_KB(avg_kb, bytes, time_ns) \
+ avg_kb = ((bytes) / 1024.0) / ((double)(time_ns) / NS_PER_SEC);
+
+#define COMPUTE_RUNNING(avg, running_avg, square_avg, cur_idx) \
+ running_avg = ((running_avg) / ((cur_idx) + 1)) * (cur_idx) + (avg) / ((cur_idx) + 1); \
+ square_avg = ((square_avg) / ((cur_idx) + 1)) * (cur_idx) + ((avg) / ((cur_idx) + 1)) * (avg);
+
+#define GET_STD_DEV(running_avg, square_avg) \
+ sqrt((square_avg) - (running_avg) * (running_avg))
+
+// Contains information about benchmark options.
+typedef struct {
+ bool print_average;
+ bool print_each_iter;
+
+ int dst_align;
+ int src_align;
+
+ int cpu_to_lock;
+
+ int data_size;
+
+ int args[MAX_ARGS];
+ int num_args;
+} command_data_t;
+
+// Struct that contains a mapping of benchmark name to benchmark function.
+typedef struct {
+ const char *name;
+ int (*ptr)(const command_data_t &cmd_data);
+} function_t;
+
+// Get the current time in nanoseconds.
+uint64_t nanoTime() {
+ struct timespec t;
+
+ t.tv_sec = t.tv_nsec = 0;
+ clock_gettime(CLOCK_MONOTONIC, &t);
+ return static_cast<uint64_t>(t.tv_sec) * NS_PER_SEC + t.tv_nsec;
+}
+
+// Allocate memory with a specific alignment and return that pointer.
+// This function assumes an alignment value that is a power of 2.
+// If the alignment is 0, then use the pointer returned by malloc.
+uint8_t *allocateAlignedMemory(size_t size, int alignment) {
+ uint64_t ptr = reinterpret_cast<uint64_t>(malloc(size + 2 * alignment));
+ if (!ptr)
+ return NULL;
+ if (alignment > 0) {
+ // When setting the alignment, set it to exactly the alignment chosen.
+ // The pointer returned will be guaranteed not to be aligned to anything
+ // more than that.
+ ptr += alignment - (ptr & (alignment - 1));
+ ptr |= alignment;
+ }
+
+ return reinterpret_cast<uint8_t*>(ptr);
+}
+
+int benchmarkSleep(const command_data_t &cmd_data) {
+ uint64_t time_ns;
+
+ int delay = cmd_data.args[0];
+ int iters = cmd_data.args[1];
+ bool print_each_iter = cmd_data.print_each_iter;
+ bool print_average = cmd_data.print_average;
+ double avg, running_avg = 0.0, square_avg = 0.0;
+ for (int i = 0; iters == -1 || i < iters; i++) {
+ time_ns = nanoTime();
+ sleep(delay);
+ time_ns = nanoTime() - time_ns;
+
+ avg = (double)time_ns / NS_PER_SEC;
+
+ if (print_average) {
+ COMPUTE_RUNNING(avg, running_avg, square_avg, i);
+ }
+
+ if (print_each_iter) {
+ printf("sleep(%d) took %.06f seconds\n", delay, avg);
+ }
+ }
+
+ if (print_average) {
+ printf(" sleep(%d) average %.06f seconds std dev %f\n", delay,
+ running_avg, GET_STD_DEV(running_avg, square_avg));
+ }
+
+ return 0;
+}
+
+int benchmarkCpu(const command_data_t &cmd_data) {
+ // Use volatile so that the loop is not optimized away by the compiler.
+ volatile int cpu_foo;
+
+ uint64_t time_ns;
+ int iters = cmd_data.args[1];
+ bool print_each_iter = cmd_data.print_each_iter;
+ bool print_average = cmd_data.print_average;
+ double avg, running_avg = 0.0, square_avg = 0.0;
+ for (int i = 0; iters == -1 || i < iters; i++) {
+ time_ns = nanoTime();
+ for (cpu_foo = 0; cpu_foo < 100000000; cpu_foo++);
+ time_ns = nanoTime() - time_ns;
+
+ avg = (double)time_ns / NS_PER_SEC;
+
+ if (print_average) {
+ COMPUTE_RUNNING(avg, running_avg, square_avg, i);
+ }
+
+ if (print_each_iter) {
+ printf("cpu took %.06f seconds\n", avg);
+ }
+ }
+
+ if (print_average) {
+ printf(" cpu average %.06f seconds std dev %f\n",
+ running_avg, GET_STD_DEV(running_avg, square_avg));
+ }
+
+ return 0;
+}
+
+int benchmarkMemset(const command_data_t &cmd_data) {
+ int size = cmd_data.args[0];
+ int iters = cmd_data.args[1];
+
+ uint8_t *dst = allocateAlignedMemory(size, cmd_data.dst_align);
+ if (!dst)
+ return -1;
+
+ double avg_kb, running_avg_kb = 0.0, square_avg_kb = 0.0;
+ uint64_t time_ns;
+ int j;
+ bool print_average = cmd_data.print_average;
+ bool print_each_iter = cmd_data.print_each_iter;
+ int copies = cmd_data.data_size/size;
+ for (int i = 0; iters == -1 || i < iters; i++) {
+ time_ns = nanoTime();
+ for (j = 0; j < copies; j++)
+ memset(dst, 0, size);
+ time_ns = nanoTime() - time_ns;
+
+ // Compute in kb to avoid any overflows.
+ COMPUTE_AVERAGE_KB(avg_kb, copies * size, time_ns);
+
+ if (print_average) {
+ COMPUTE_RUNNING(avg_kb, running_avg_kb, square_avg_kb, i);
+ }
+
+ if (print_each_iter) {
+ printf("memset %dx%d bytes took %.06f seconds (%f MB/s)\n",
+ copies, size, (double)time_ns / NS_PER_SEC, avg_kb / 1024.0);
+ }
+ }
+
+ if (print_average) {
+ printf(" memset %dx%d bytes average %.2f MB/s std dev %.4f\n",
+ copies, size, running_avg_kb / 1024.0,
+ GET_STD_DEV(running_avg_kb, square_avg_kb) / 1024.0);
+ }
+ return 0;
+}
+
+int benchmarkMemcpy(const command_data_t &cmd_data) {
+ int size = cmd_data.args[0];
+ int iters = cmd_data.args[1];
+
+ uint8_t *src = allocateAlignedMemory(size, cmd_data.src_align);
+ if (!src)
+ return -1;
+ uint8_t *dst = allocateAlignedMemory(size, cmd_data.dst_align);
+ if (!dst)
+ return -1;
+
+ uint64_t time_ns;
+ double avg_kb, running_avg_kb = 0.0, square_avg_kb = 0.0;
+ int j;
+ bool print_average = cmd_data.print_average;
+ bool print_each_iter = cmd_data.print_each_iter;
+ int copies = cmd_data.data_size / size;
+ for (int i = 0; iters == -1 || i < iters; i++) {
+ time_ns = nanoTime();
+ for (j = 0; j < copies; j++)
+ memcpy(dst, src, size);
+ time_ns = nanoTime() - time_ns;
+
+ // Compute in kb to avoid any overflows.
+ COMPUTE_AVERAGE_KB(avg_kb, copies * size, time_ns);
+
+ if (print_average) {
+ COMPUTE_RUNNING(avg_kb, running_avg_kb, square_avg_kb, i);
+ }
+
+ if (print_each_iter) {
+ printf("memcpy %dx%d bytes took %.06f seconds (%f MB/s)\n",
+ copies, size, (double)time_ns / NS_PER_SEC, avg_kb / 1024.0);
+ }
+ }
+ if (print_average) {
+ printf(" memcpy %dx%d bytes average %.2f MB/s std dev %.4f\n",
+ copies, size, running_avg_kb/1024.0,
+ GET_STD_DEV(running_avg_kb, square_avg_kb) / 1024.0);
+ }
+ return 0;
+}
+
+int benchmarkMemread(const command_data_t &cmd_data) {
+ int size = cmd_data.args[0];
+ int iters = cmd_data.args[1];
+
+ int *src = reinterpret_cast<int*>(malloc(size));
+ if (!src)
+ return -1;
+
+ // Use volatile so the compiler does not optimize away the reads.
+ volatile int foo;
+ uint64_t time_ns;
+ int j, k;
+ double avg_kb, running_avg_kb = 0.0, square_avg_kb = 0.0;
+ bool print_average = cmd_data.print_average;
+ bool print_each_iter = cmd_data.print_each_iter;
+ int c = cmd_data.data_size / size;
+ for (int i = 0; iters == -1 || i < iters; i++) {
+ time_ns = nanoTime();
+ for (j = 0; j < c; j++)
+ for (k = 0; k < size/4; k++)
+ foo = src[k];
+ time_ns = nanoTime() - time_ns;
+
+ // Compute in kb to avoid any overflows.
+ COMPUTE_AVERAGE_KB(avg_kb, c * size, time_ns);
+
+ if (print_average) {
+ COMPUTE_RUNNING(avg_kb, running_avg_kb, square_avg_kb, i);
+ }
+
+ if (print_each_iter) {
+ printf("read %dx%d bytes took %.06f seconds (%f MB/s)\n",
+ c, size, (double)time_ns / NS_PER_SEC, avg_kb / 1024.0);
+ }
+ }
+
+ if (print_average) {
+ printf(" read %dx%d bytes average %.2f MB/s std dev %.4f\n",
+ c, size, running_avg_kb/1024.0,
+ GET_STD_DEV(running_avg_kb, square_avg_kb) / 1024.0);
+ }
+
+ return 0;
+}
+
+// Create the mapping structure.
+function_t function_table[] = {
+ { "sleep", benchmarkSleep },
+ { "cpu", benchmarkCpu },
+ { "memset", benchmarkMemset },
+ { "memcpy", benchmarkMemcpy },
+ { "memread", benchmarkMemread },
+ { NULL, NULL }
+};
+
+void usage() {
+ printf("Usage:\n");
+ printf(" micro_bench [--data_size DATA_BYTES] [--print_average]\n");
+ printf(" [--no_print_each_iter] [--lock_to_cpu CORE]\n");
+ printf(" --data_size DATA_BYTES\n");
+ printf(" For the data benchmarks (memcpy/memset/memread) the approximate\n");
+ printf(" size of data, in bytes, that will be manipulated in each iteration.\n");
+ printf(" --print_average\n");
+ printf(" Print the average and standard deviation of all iterations.\n");
+ printf(" --no_print_each_iter\n");
+ printf(" Do not print any values in each iteration.\n");
+ printf(" --lock_to_cpu CORE\n");
+ printf(" Lock to the specified CORE. The default is to use the last core found.\n");
+ printf(" ITERS\n");
+ printf(" The number of iterations to execute each benchmark. If not\n");
+ printf(" passed in then run forever.\n");
+ printf(" micro_bench sleep TIME_TO_SLEEP [ITERS]\n");
+ printf(" TIME_TO_SLEEP\n");
+ printf(" The time in seconds to sleep.\n");
+ printf(" micro_bench cpu UNUSED [ITERS]\n");
+ printf(" micro_bench [--dst_align ALIGN] memset NUM_BYTES [ITERS]\n");
+ printf(" --dst_align ALIGN\n");
+ printf(" Align the memset destination pointer to ALIGN. The default is to use the\n");
+ printf(" value returned by malloc.\n");
+ printf(" micro_bench [--src_align ALIGN] [--dst_align ALIGN] memcpy NUM_BYTES [ITERS]\n");
+ printf(" --src_align ALIGN\n");
+ printf(" Align the memcpy source pointer to ALIGN. The default is to use the\n");
+ printf(" value returned by malloc.\n");
+ printf(" --dst_align ALIGN\n");
+ printf(" Align the memcpy destination pointer to ALIGN. The default is to use the\n");
+ printf(" value returned by malloc.\n");
+ printf(" micro_bench memread NUM_BYTES [ITERS]\n");
+}
+
+function_t *processOptions(int argc, char **argv, command_data_t *cmd_data) {
+ function_t *command = NULL;
+
+ // Initialize the command_flags.
+ cmd_data->print_average = false;
+ cmd_data->print_each_iter = true;
+ cmd_data->dst_align = 0;
+ cmd_data->src_align = 0;
+ cmd_data->num_args = 0;
+ cmd_data->cpu_to_lock = -1;
+ cmd_data->data_size = DEFAULT_DATA_SIZE;
+ for (int i = 0; i < MAX_ARGS; i++) {
+ cmd_data->args[i] = -1;
+ }
+
+ for (int i = 1; i < argc; i++) {
+ if (argv[i][0] == '-') {
+ int *save_value = NULL;
+ if (strcmp(argv[i], "--print_average") == 0) {
+ cmd_data->print_average = true;
+ } else if (strcmp(argv[i], "--no_print_each_iter") == 0) {
+ cmd_data->print_each_iter = false;
+ } else if (strcmp(argv[i], "--dst_align") == 0) {
+ save_value = &cmd_data->dst_align;
+ } else if (strcmp(argv[i], "--src_align") == 0) {
+ save_value = &cmd_data->src_align;
+ } else if (strcmp(argv[i], "--lock_to_cpu") == 0) {
+ save_value = &cmd_data->cpu_to_lock;
+ } else if (strcmp(argv[i], "--data_size") == 0) {
+ save_value = &cmd_data->data_size;
+ } else {
+ printf("Unknown option %s\n", argv[i]);
+ return NULL;
+ }
+ if (save_value) {
+ // Checking both characters without a strlen() call should be
+ // safe since as long as the argument exists, one character will
+ // be present (\0). And if the first character is '-', then
+ // there will always be a second character (\0 again).
+ if (i == argc - 1 || (argv[i + 1][0] == '-' && !isdigit(argv[i + 1][1]))) {
+ printf("The option %s requires one argument.\n",
+ argv[i]);
+ return NULL;
+ }
+ *save_value = atoi(argv[++i]);
+ }
+ } else if (!command) {
+ for (function_t *function = function_table; function->name != NULL; function++) {
+ if (strcmp(argv[i], function->name) == 0) {
+ command = function;
+ break;
+ }
+ }
+ if (!command) {
+ printf("Uknown command %s\n", argv[i]);
+ return NULL;
+ }
+ } else if (cmd_data->num_args > MAX_ARGS) {
+ printf("More than %d number arguments passed in.\n", MAX_ARGS);
+ return NULL;
+ } else {
+ cmd_data->args[cmd_data->num_args++] = atoi(argv[i]);
+ }
+ }
+
+ // Check the arguments passed in make sense.
+ if (cmd_data->num_args != 1 && cmd_data->num_args != 2) {
+ printf("Not enough arguments passed in.\n");
+ return NULL;
+ } else if (cmd_data->dst_align < 0) {
+ printf("The --dst_align option must be greater than or equal to 0.\n");
+ return NULL;
+ } else if (cmd_data->src_align < 0) {
+ printf("The --src_align option must be greater than or equal to 0.\n");
+ return NULL;
+ } else if (cmd_data->data_size <= 0) {
+ printf("The --data_size option must be a positive number.\n");
+ return NULL;
+ } else if ((cmd_data->dst_align & (cmd_data->dst_align - 1))) {
+ printf("The --dst_align option must be a power of 2.\n");
+ return NULL;
+ } else if ((cmd_data->src_align & (cmd_data->src_align - 1))) {
+ printf("The --src_align option must be a power of 2.\n");
+ return NULL;
+ }
+
+ return command;
+}
+
+bool raisePriorityAndLock(int cpu_to_lock) {
+ cpu_set_t cpuset;
+
+ if (setpriority(PRIO_PROCESS, 0, -20)) {
+ perror("Unable to raise priority of process.\n");
+ return false;
+ }
+
+ CPU_ZERO(&cpuset);
+ if (sched_getaffinity(0, sizeof(cpuset), &cpuset) != 0) {
+ perror("sched_getaffinity failed");
+ return false;
+ }
+
+ if (cpu_to_lock < 0) {
+ // Lock to the last active core we find.
+ for (int i = 0; i < CPU_SETSIZE; i++) {
+ if (CPU_ISSET(i, &cpuset)) {
+ cpu_to_lock = i;
+ }
+ }
+ } else if (!CPU_ISSET(cpu_to_lock, &cpuset)) {
+ printf("Cpu %d does not exist.\n", cpu_to_lock);
+ return false;
+ }
+
+ if (cpu_to_lock < 0) {
+ printf("Cannot find any valid cpu to lock.\n");
+ return false;
+ }
+
+ CPU_ZERO(&cpuset);
+ CPU_SET(cpu_to_lock, &cpuset);
+ if (sched_setaffinity(0, sizeof(cpuset), &cpuset) != 0) {
+ perror("sched_setaffinity failed");
+ return false;
+ }
+
+ return true;
+}
+
+int main(int argc, char **argv) {
+ command_data_t cmd_data;
+
+ function_t *command = processOptions(argc, argv, &cmd_data);
+ if (!command) {
+ usage();
+ return -1;
+ }
+
+ if (!raisePriorityAndLock(cmd_data.cpu_to_lock)) {
+ return -1;
+ }
+
+ printf("%s\n", command->name);
+ return (*command->ptr)(cmd_data);
+}