/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "IOEventLoop.h" #include #include #include #include #include using namespace simpleperf; // @CddTest = 6.1/C-0-2 TEST(IOEventLoop, read) { int fd[2]; ASSERT_EQ(0, pipe(fd)); IOEventLoop loop; int count = 0; int retry_count = 0; ASSERT_NE(nullptr, loop.AddReadEvent(fd[0], [&]() { while (true) { char c; int ret = read(fd[0], &c, 1); if (ret == 1) { if (++count == 100) { return loop.ExitLoop(); } } else if (ret == -1 && errno == EAGAIN) { retry_count++; break; } else { return false; } } return true; })); std::thread thread([&]() { for (int i = 0; i < 100; ++i) { usleep(1000); char c; CHECK_EQ(write(fd[1], &c, 1), 1); } }); ASSERT_TRUE(loop.RunLoop()); thread.join(); ASSERT_EQ(100, count); // Test retry_count to make sure we are not doing blocking read. ASSERT_GT(retry_count, 0); close(fd[0]); close(fd[1]); } // @CddTest = 6.1/C-0-2 TEST(IOEventLoop, write) { int fd[2]; ASSERT_EQ(0, pipe(fd)); IOEventLoop loop; int count = 0; ASSERT_NE(nullptr, loop.AddWriteEvent(fd[1], [&]() { int ret = 0; char buf[4096]; while ((ret = write(fd[1], buf, sizeof(buf))) > 0) { } if (ret == -1 && errno == EAGAIN) { if (++count == 100) { loop.ExitLoop(); } return true; } return false; })); std::thread thread([&]() { usleep(500000); while (true) { usleep(1000); char buf[4096]; if (read(fd[0], buf, sizeof(buf)) <= 0) { break; } } }); ASSERT_TRUE(loop.RunLoop()); // close fd[1] to make read thread stop. close(fd[1]); thread.join(); close(fd[0]); ASSERT_EQ(100, count); } // @CddTest = 6.1/C-0-2 TEST(IOEventLoop, signal) { IOEventLoop loop; int count = 0; ASSERT_TRUE(loop.AddSignalEvent(SIGINT, [&]() { if (++count == 100) { loop.ExitLoop(); } return true; })); std::atomic stop_thread(false); std::thread thread([&]() { while (!stop_thread) { usleep(1000); kill(getpid(), SIGINT); } }); ASSERT_TRUE(loop.RunLoop()); stop_thread = true; thread.join(); ASSERT_EQ(100, count); } void TestPeriodicEvents(int period_in_us, int iterations) { timeval tv; tv.tv_sec = period_in_us / 1000000; tv.tv_usec = period_in_us % 1000000; int count = 0; IOEventLoop loop; ASSERT_TRUE(loop.AddPeriodicEvent(tv, [&]() { if (++count == iterations) { loop.ExitLoop(); } return true; })); auto start_time = std::chrono::steady_clock::now(); ASSERT_TRUE(loop.RunLoop()); auto end_time = std::chrono::steady_clock::now(); ASSERT_EQ(iterations, count); double time_used = std::chrono::duration_cast>(end_time - start_time).count(); double min_time_in_sec = period_in_us / 1e6 * iterations; double max_time_in_sec = min_time_in_sec + 0.3; ASSERT_GE(time_used, min_time_in_sec); ASSERT_LT(time_used, max_time_in_sec); } // @CddTest = 6.1/C-0-2 TEST(IOEventLoop, periodic) { TestPeriodicEvents(1000, 100); } // @CddTest = 6.1/C-0-2 TEST(IOEventLoop, one_time_event) { int duration_in_us = 1000; timeval tv = {}; tv.tv_usec = duration_in_us; int count = 0; auto callback_time = std::chrono::steady_clock::now(); IOEventLoop loop; // Add a one time event to test callback count and time. ASSERT_TRUE(loop.AddOneTimeEvent(tv, [&]() { ++count; callback_time = std::chrono::steady_clock::now(); return true; })); // Add another one time event to exit loop. tv.tv_usec = duration_in_us * 3; ASSERT_TRUE(loop.AddOneTimeEvent(tv, [&]() { return loop.ExitLoop(); })); auto start_time = std::chrono::steady_clock::now(); ASSERT_TRUE(loop.RunLoop()); ASSERT_EQ(1, count); double time_used = std::chrono::duration_cast>(callback_time - start_time).count(); double min_time_in_sec = duration_in_us / 1e6; double max_time_in_sec = min_time_in_sec + 0.3; ASSERT_GE(time_used, min_time_in_sec); ASSERT_LT(time_used, max_time_in_sec); } // @CddTest = 6.1/C-0-2 TEST(IOEventLoop, read_and_del_event) { int fd[2]; ASSERT_EQ(0, pipe(fd)); IOEventLoop loop; int count = 0; IOEventRef ref = loop.AddReadEvent(fd[0], [&]() { count++; return IOEventLoop::DelEvent(ref); }); ASSERT_NE(nullptr, ref); std::thread thread([&]() { for (int i = 0; i < 100; ++i) { usleep(1000); char c; CHECK_EQ(write(fd[1], &c, 1), 1); } }); ASSERT_TRUE(loop.RunLoop()); thread.join(); ASSERT_EQ(1, count); close(fd[0]); close(fd[1]); } // @CddTest = 6.1/C-0-2 TEST(IOEventLoop, disable_enable_event) { int fd[2]; ASSERT_EQ(0, pipe(fd)); IOEventLoop loop; int count = 0; IOEventRef ref = loop.AddWriteEvent(fd[1], [&]() { count++; return IOEventLoop::DisableEvent(ref); }); ASSERT_NE(nullptr, ref); timeval tv; tv.tv_sec = 0; tv.tv_usec = 500000; int periodic_count = 0; ASSERT_TRUE(loop.AddPeriodicEvent(tv, [&]() { periodic_count++; if (periodic_count == 1) { if (count != 1) { return false; } return IOEventLoop::EnableEvent(ref); } else { if (count != 2) { return false; } return loop.ExitLoop(); } })); ASSERT_TRUE(loop.RunLoop()); ASSERT_EQ(2, count); ASSERT_EQ(2, periodic_count); close(fd[0]); close(fd[1]); } // @CddTest = 6.1/C-0-2 TEST(IOEventLoop, disable_enable_periodic_event) { timeval tv; tv.tv_sec = 0; tv.tv_usec = 200000; IOEventLoop loop; IOEventRef wait_ref = loop.AddPeriodicEvent(tv, [&]() { return loop.ExitLoop(); }); ASSERT_TRUE(wait_ref != nullptr); ASSERT_TRUE(loop.DisableEvent(wait_ref)); tv.tv_sec = 0; tv.tv_usec = 100000; size_t periodic_count = 0; IOEventRef ref = loop.AddPeriodicEvent(tv, [&]() { if (!loop.DisableEvent(ref)) { return false; } periodic_count++; if (periodic_count < 2u) { return loop.EnableEvent(ref); } return loop.EnableEvent(wait_ref); }); ASSERT_TRUE(loop.RunLoop()); ASSERT_EQ(2u, periodic_count); } // @CddTest = 6.1/C-0-2 TEST(IOEventLoop, exit_before_loop) { IOEventLoop loop; ASSERT_TRUE(loop.ExitLoop()); } // @CddTest = 6.1/C-0-2 TEST(IOEventLoop, priority) { int low_priority_fd[2]; ASSERT_EQ(0, pipe(low_priority_fd)); int high_priority_fd[2]; ASSERT_EQ(0, pipe(high_priority_fd)); IOEventLoop loop; int count = 0; ASSERT_NE(nullptr, loop.AddReadEvent( low_priority_fd[0], [&]() { char c; read(low_priority_fd[0], &c, 1); CHECK_EQ(count, 1); count++; return loop.ExitLoop(); }, IOEventLowPriority)); ASSERT_NE(nullptr, loop.AddReadEvent( high_priority_fd[0], [&]() { char c; read(high_priority_fd[0], &c, 1); CHECK_EQ(count, 0); count++; return true; }, IOEventHighPriority)); char c; CHECK_EQ(write(low_priority_fd[1], &c, 1), 1); CHECK_EQ(write(high_priority_fd[1], &c, 1), 1); ASSERT_TRUE(loop.RunLoop()); ASSERT_EQ(2, count); for (int i = 0; i < 2; i++) { close(low_priority_fd[i]); close(high_priority_fd[i]); } }