/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "IOEventLoop.h" #include "ProbeEvents.h" #include "cmd_stat_impl.h" #include "command.h" #include "environment.h" #include "event_attr.h" #include "event_fd.h" #include "event_selection_set.h" #include "event_type.h" #include "utils.h" #include "workload.h" namespace simpleperf { using android::base::Split; static std::vector default_measured_event_types{ "cpu-cycles", "stalled-cycles-frontend", "stalled-cycles-backend", "instructions", "branch-instructions", "branch-misses", "task-clock", "context-switches", "page-faults", }; static const std::unordered_map> COMMON_EVENT_RATE_MAP = { {"cache-misses", {"cache-references", "miss rate"}}, {"branch-misses", {"branch-instructions", "miss rate"}}, }; static const std::unordered_map> ARM_EVENT_RATE_MAP = { // Refer to "D6.10.5 Meaningful ratios between common microarchitectural events" in ARMv8 // specification. {"raw-l1i-cache-refill", {"raw-l1i-cache", "level 1 instruction cache refill rate"}}, {"raw-l1i-tlb-refill", {"raw-l1i-tlb", "level 1 instruction TLB refill rate"}}, {"raw-l1d-cache-refill", {"raw-l1d-cache", "level 1 data or unified cache refill rate"}}, {"raw-l1d-tlb-refill", {"raw-l1d-tlb", "level 1 data or unified TLB refill rate"}}, {"raw-l2d-cache-refill", {"raw-l2d-cache", "level 2 data or unified cache refill rate"}}, {"raw-l2i-cache-refill", {"raw-l2i-cache", "level 2 instruction cache refill rate"}}, {"raw-l3d-cache-refill", {"raw-l3d-cache", "level 3 data or unified cache refill rate"}}, {"raw-l2d-tlb-refill", {"raw-l2d-tlb", "level 2 data or unified TLB refill rate"}}, {"raw-l2i-tlb-refill", {"raw-l2i-tlb", "level 2 instruction TLB refill rate"}}, {"raw-bus-access", {"raw-bus-cycles", "bus accesses per cycle"}}, {"raw-ll-cache-miss", {"raw-ll-cache", "last level data or unified cache refill rate"}}, {"raw-dtlb-walk", {"raw-l1d-tlb", "data TLB miss rate"}}, {"raw-itlb-walk", {"raw-l1i-tlb", "instruction TLB miss rate"}}, {"raw-ll-cache-miss-rd", {"raw-ll-cache-rd", "memory read operation miss rate"}}, {"raw-remote-access-rd", {"raw-remote-access", "read accesses to another socket in a multi-socket system"}}, // Refer to "Table K3-2 Relationship between REFILL events and associated access events" in // ARMv8 specification. {"raw-l1d-cache-refill-rd", {"raw-l1d-cache-rd", "level 1 cache refill rate, read"}}, {"raw-l1d-cache-refill-wr", {"raw-l1d-cache-wr", "level 1 cache refill rate, write"}}, {"raw-l1d-tlb-refill-rd", {"raw-l1d-tlb-rd", "level 1 TLB refill rate, read"}}, {"raw-l1d-tlb-refill-wr", {"raw-l1d-tlb-wr", "level 1 TLB refill rate, write"}}, {"raw-l2d-cache-refill-rd", {"raw-l2d-cache-rd", "level 2 data cache refill rate, read"}}, {"raw-l2d-cache-refill-wr", {"raw-l2d-cache-wr", "level 2 data cache refill rate, write"}}, {"raw-l2d-tlb-refill-rd", {"raw-l2d-tlb-rd", "level 2 data TLB refill rate, read"}}, }; std::string CounterSummary::ReadableCountValue(bool csv) { if (type_name == "cpu-clock" || type_name == "task-clock") { // Convert nanoseconds to milliseconds. double value = count / 1e6; return android::base::StringPrintf("%lf(ms)", value); } if (csv) { return android::base::StringPrintf("%" PRIu64, count); } return ReadableCount(count); } const CounterSummary* CounterSummaries::FindSummary(const std::string& type_name, const std::string& modifier, const ThreadInfo* thread, int cpu) { for (const auto& s : summaries_) { if (s.type_name == type_name && s.modifier == modifier && s.thread == thread && s.cpu == cpu) { return &s; } } return nullptr; } void CounterSummaries::AutoGenerateSummaries() { for (size_t i = 0; i < summaries_.size(); ++i) { const CounterSummary& s = summaries_[i]; if (s.modifier == "u") { const CounterSummary* other = FindSummary(s.type_name, "k", s.thread, s.cpu); if (other != nullptr && other->IsMonitoredAtTheSameTime(s)) { if (FindSummary(s.type_name, "", s.thread, s.cpu) == nullptr) { summaries_.emplace_back(s.type_name, "", s.group_id, s.thread, s.cpu, s.count + other->count, s.runtime_in_ns, s.scale, true, csv_); } } } } } void CounterSummaries::GenerateComments(double duration_in_sec) { for (auto& s : summaries_) { s.comment = GetCommentForSummary(s, duration_in_sec); } } void CounterSummaries::Show(FILE* fp) { bool show_thread = !summaries_.empty() && summaries_[0].thread != nullptr; bool show_cpu = !summaries_.empty() && summaries_[0].cpu != -1; if (csv_) { ShowCSV(fp, show_thread, show_cpu); } else { ShowText(fp, show_thread, show_cpu); } } void CounterSummaries::ShowCSV(FILE* fp, bool show_thread, bool show_cpu) { for (auto& s : summaries_) { if (show_thread) { fprintf(fp, "%s,%d,%d,", s.thread->name.c_str(), s.thread->pid, s.thread->tid); } if (show_cpu) { fprintf(fp, "%d,", s.cpu); } fprintf(fp, "%s,%s,%s,%s\n", s.readable_count.c_str(), s.Name().c_str(), s.comment.c_str(), (s.auto_generated ? "(generated)," : "")); } } void CounterSummaries::ShowText(FILE* fp, bool show_thread, bool show_cpu) { std::vector titles; if (show_thread) { titles = {"thread_name", "pid", "tid"}; } if (show_cpu) { titles.emplace_back("cpu"); } titles.emplace_back("count"); titles.emplace_back("event_name"); titles.emplace_back(" # count / runtime"); std::vector width(titles.size(), 0); auto adjust_width = [](size_t& w, size_t size) { w = std::max(w, size); }; // The last title is too long. Don't include it for width adjustment. for (size_t i = 0; i + 1 < titles.size(); i++) { adjust_width(width[i], titles[i].size()); } for (auto& s : summaries_) { size_t i = 0; if (show_thread) { adjust_width(width[i++], s.thread->name.size()); adjust_width(width[i++], std::to_string(s.thread->pid).size()); adjust_width(width[i++], std::to_string(s.thread->tid).size()); } if (show_cpu) { adjust_width(width[i++], std::to_string(s.cpu).size()); } adjust_width(width[i++], s.readable_count.size()); adjust_width(width[i++], s.Name().size()); adjust_width(width[i++], s.comment.size()); } fprintf(fp, "# "); for (size_t i = 0; i < titles.size(); i++) { if (titles[i] == "count") { fprintf(fp, "%*s", static_cast(width[i]), titles[i].c_str()); } else { fprintf(fp, "%-*s", static_cast(width[i]), titles[i].c_str()); } if (i + 1 < titles.size()) { fprintf(fp, " "); } } fprintf(fp, "\n"); for (auto& s : summaries_) { size_t i = 0; if (show_thread) { fprintf(fp, " %-*s", static_cast(width[i++]), s.thread->name.c_str()); fprintf(fp, " %-*d", static_cast(width[i++]), s.thread->pid); fprintf(fp, " %-*d", static_cast(width[i++]), s.thread->tid); } if (show_cpu) { fprintf(fp, " %-*d", static_cast(width[i++]), s.cpu); } fprintf(fp, " %*s %-*s # %-*s%s\n", static_cast(width[i]), s.readable_count.c_str(), static_cast(width[i + 1]), s.Name().c_str(), static_cast(width[i + 2]), s.comment.c_str(), (s.auto_generated ? " (generated)" : "")); } } std::string CounterSummaries::GetCommentForSummary(const CounterSummary& s, double duration_in_sec) { char sap_mid; if (csv_) { sap_mid = ','; } else { sap_mid = ' '; } if (s.type_name == "task-clock") { double run_sec = s.count / 1e9; double used_cpus = run_sec / duration_in_sec; return android::base::StringPrintf("%f%ccpus used", used_cpus, sap_mid); } if (s.type_name == "cpu-clock") { return ""; } if (s.type_name == "cpu-cycles") { if (s.runtime_in_ns == 0) { return ""; } double ghz = static_cast(s.count) / s.runtime_in_ns; return android::base::StringPrintf("%f%cGHz", ghz, sap_mid); } if (s.type_name == "instructions" && s.count != 0) { const CounterSummary* other = FindSummary("cpu-cycles", s.modifier, s.thread, s.cpu); if (other != nullptr && other->IsMonitoredAtTheSameTime(s)) { double cpi = static_cast(other->count) / s.count; return android::base::StringPrintf("%f%ccycles per instruction", cpi, sap_mid); } } std::string rate_comment = GetRateComment(s, sap_mid); if (!rate_comment.empty()) { return rate_comment; } if (s.runtime_in_ns == 0) { return ""; } double runtime_in_sec = static_cast(s.runtime_in_ns) / 1e9; double rate = s.count / runtime_in_sec; if (rate >= 1e9 - 1e5) { return android::base::StringPrintf("%.3f%cG/sec", rate / 1e9, sap_mid); } if (rate >= 1e6 - 1e2) { return android::base::StringPrintf("%.3f%cM/sec", rate / 1e6, sap_mid); } if (rate >= 1e3) { return android::base::StringPrintf("%.3f%cK/sec", rate / 1e3, sap_mid); } return android::base::StringPrintf("%.3f%c/sec", rate, sap_mid); } std::string CounterSummaries::GetRateComment(const CounterSummary& s, char sep) { std::string_view miss_event_name = s.type_name; std::string event_name; std::string rate_desc; if (auto it = COMMON_EVENT_RATE_MAP.find(miss_event_name); it != COMMON_EVENT_RATE_MAP.end()) { event_name = it->second.first; rate_desc = it->second.second; } if (event_name.empty() && (GetTargetArch() == ARCH_ARM || GetTargetArch() == ARCH_ARM64)) { if (auto it = ARM_EVENT_RATE_MAP.find(miss_event_name); it != ARM_EVENT_RATE_MAP.end()) { event_name = it->second.first; rate_desc = it->second.second; } } if (event_name.empty() && android::base::ConsumeSuffix(&miss_event_name, "-misses")) { event_name = std::string(miss_event_name) + "s"; rate_desc = "miss rate"; } if (!event_name.empty()) { const CounterSummary* other = FindSummary(event_name, s.modifier, s.thread, s.cpu); if (other != nullptr && other->IsMonitoredAtTheSameTime(s) && other->count != 0) { double miss_rate = static_cast(s.count) / other->count; return android::base::StringPrintf("%f%%%c%s", miss_rate * 100, sep, rate_desc.c_str()); } } return ""; } namespace { // devfreq may use performance counters to calculate memory latency (as in // drivers/devfreq/arm-memlat-mon.c). Hopefully we can get more available counters by asking devfreq // to not use the memory latency governor temporarily. class DevfreqCounters { public: bool Use() { if (!IsRoot()) { LOG(ERROR) << "--use-devfreq-counters needs root permission to set devfreq governors"; return false; } std::string devfreq_dir = "/sys/class/devfreq/"; for (auto& name : GetSubDirs(devfreq_dir)) { std::string governor_path = devfreq_dir + name + "/governor"; if (IsRegularFile(governor_path)) { std::string governor; if (!android::base::ReadFileToString(governor_path, &governor)) { LOG(ERROR) << "failed to read " << governor_path; return false; } governor = android::base::Trim(governor); if (governor == "mem_latency") { if (!android::base::WriteStringToFile("performance", governor_path)) { PLOG(ERROR) << "failed to write " << governor_path; return false; } mem_latency_governor_paths_.emplace_back(std::move(governor_path)); } } } return true; } ~DevfreqCounters() { for (auto& path : mem_latency_governor_paths_) { android::base::WriteStringToFile("mem_latency", path); } } private: std::vector mem_latency_governor_paths_; }; class StatCommand : public Command { public: StatCommand() : Command( "stat", "gather performance counter information", // clang-format off "Usage: simpleperf stat [options] [command [command-args]]\n" " Gather performance counter information of running [command].\n" " And -a/-p/-t option can be used to change target of counter information.\n" "-a Collect system-wide information.\n" #if defined(__ANDROID__) "--app package_name Profile the process of an Android application.\n" " On non-rooted devices, the app must be debuggable,\n" " because we use run-as to switch to the app's context.\n" #endif "--cpu cpu_item1,cpu_item2,... Monitor events on selected cpus. cpu_item can be a number like\n" " 1, or a range like 0-3. A --cpu option affects all event types\n" " following it until meeting another --cpu option.\n" "--csv Write report in comma separate form.\n" "--duration time_in_sec Monitor for time_in_sec seconds instead of running\n" " [command]. Here time_in_sec may be any positive\n" " floating point number.\n" "--interval time_in_ms Print stat for every time_in_ms milliseconds.\n" " Here time_in_ms may be any positive floating point\n" " number. Simpleperf prints total values from the\n" " starting point. But this can be changed by\n" " --interval-only-values.\n" "--interval-only-values Print numbers of events happened in each interval.\n" "-e event1[:modifier1],event2[:modifier2],...\n" " Select a list of events to count. An event can be:\n" " 1) an event name listed in `simpleperf list`;\n" " 2) a raw PMU event in rN format. N is a hex number.\n" " For example, r1b selects event number 0x1b.\n" " Modifiers can be added to define how the event should be\n" " monitored. Possible modifiers are:\n" " u - monitor user space events only\n" " k - monitor kernel space events only\n" "--group event1[:modifier],event2[:modifier2],...\n" " Similar to -e option. But events specified in the same --group\n" " option are monitored as a group, and scheduled in and out at the\n" " same time.\n" "--kprobe kprobe_event1,kprobe_event2,...\n" " Add kprobe events during stating. The kprobe_event format is in\n" " Documentation/trace/kprobetrace.rst in the kernel. Examples:\n" " 'p:myprobe do_sys_openat2 $arg2:string' - add event kprobes:myprobe\n" " 'r:myretprobe do_sys_openat2 $retval:s64' - add event kprobes:myretprobe\n" "--no-inherit Don't stat created child threads/processes.\n" "-o output_filename Write report to output_filename instead of standard output.\n" "--per-core Print counters for each cpu core.\n" "--per-thread Print counters for each thread.\n" "-p pid_or_process_name_regex1,pid_or_process_name_regex2,...\n" " Stat events on existing processes. Processes are searched either by pid\n" " or process name regex. Mutually exclusive with -a.\n" "-t tid1,tid2,... Stat events on existing threads. Mutually exclusive with -a.\n" "--tp-filter filter_string Set filter_string for the previous tracepoint event.\n" " Format is in Documentation/trace/events.rst in the kernel.\n" " An example: 'prev_comm != \"simpleperf\" && (prev_pid > 1)'.\n" "--print-hw-counter Test and print CPU PMU hardware counters available on the device.\n" "--sort key1,key2,... Select keys used to sort the report, used when --per-thread\n" " or --per-core appears. The appearance order of keys decides\n" " the order of keys used to sort the report.\n" " Possible keys include:\n" " count -- event count for each entry\n" " count_per_thread -- event count for a thread on all cpus\n" " cpu -- cpu id\n" " pid -- process id\n" " tid -- thread id\n" " comm -- thread name\n" " The default sort keys are:\n" " count_per_thread,tid,cpu,count\n" #if defined(__ANDROID__) "--use-devfreq-counters On devices with Qualcomm SOCs, some hardware counters may be used\n" " to monitor memory latency (in drivers/devfreq/arm-memlat-mon.c),\n" " making fewer counters available to users. This option asks devfreq\n" " to temporarily release counters by replacing memory-latency governor\n" " with performance governor. It affects memory latency during profiling,\n" " and may cause wedged power if simpleperf is killed in between.\n" #endif "--verbose Show result in verbose mode.\n" #if 0 // Below options are only used internally and shouldn't be visible to the public. "--in-app We are already running in the app's context.\n" "--tracepoint-events file_name Read tracepoint events from [file_name] instead of tracefs.\n" "--out-fd Write output to a file descriptor.\n" "--stop-signal-fd Stop stating when fd is readable.\n" #endif // clang-format on ), verbose_mode_(false), system_wide_collection_(false), child_inherit_(true), duration_in_sec_(0), interval_in_ms_(0), interval_only_values_(false), event_selection_set_(true), csv_(false), in_app_context_(false) { // Die if parent exits. prctl(PR_SET_PDEATHSIG, SIGHUP, 0, 0, 0); // Set default sort keys. Full key list is in BuildSummaryComparator(). sort_keys_ = {"count_per_thread", "tid", "cpu", "count"}; } bool Run(const std::vector& args); private: bool ParseOptions(const std::vector& args, std::vector* non_option_args, ProbeEvents& probe_events); void PrintHardwareCounters(); bool AddDefaultMeasuredEventTypes(); void SetEventSelectionFlags(); void MonitorEachThread(); void AdjustToIntervalOnlyValues(std::vector& counters); bool ShowCounters(const std::vector& counters, double duration_in_sec, FILE* fp); void CheckHardwareCounterMultiplexing(); void PrintWarningForInaccurateEvents(); bool verbose_mode_; bool system_wide_collection_; bool child_inherit_; double duration_in_sec_; double interval_in_ms_; bool interval_only_values_; std::vector> last_sum_values_; EventSelectionSet event_selection_set_; std::string output_filename_; android::base::unique_fd out_fd_; bool csv_; std::string app_package_name_; bool in_app_context_; android::base::unique_fd stop_signal_fd_; bool use_devfreq_counters_ = false; bool report_per_core_ = false; bool report_per_thread_ = false; // used to report event count for each thread std::unordered_map thread_info_; // used to sort report std::vector sort_keys_; std::optional summary_comparator_; bool print_hw_counter_ = false; }; bool StatCommand::Run(const std::vector& args) { if (!CheckPerfEventLimit()) { return false; } AllowMoreOpenedFiles(); // 1. Parse options, and use default measured event types if not given. std::vector workload_args; ProbeEvents probe_events(event_selection_set_); if (!ParseOptions(args, &workload_args, probe_events)) { return false; } if (print_hw_counter_) { PrintHardwareCounters(); return true; } if (!app_package_name_.empty() && !in_app_context_) { if (!IsRoot()) { return RunInAppContext(app_package_name_, "stat", args, workload_args.size(), output_filename_, !event_selection_set_.GetTracepointEvents().empty()); } } DevfreqCounters devfreq_counters; if (use_devfreq_counters_) { if (!devfreq_counters.Use()) { return false; } } if (event_selection_set_.empty()) { if (!AddDefaultMeasuredEventTypes()) { return false; } } SetEventSelectionFlags(); // 2. Create workload. std::unique_ptr workload; if (!workload_args.empty()) { workload = Workload::CreateWorkload(workload_args); if (workload == nullptr) { return false; } } bool need_to_check_targets = false; if (system_wide_collection_) { if (report_per_thread_) { event_selection_set_.AddMonitoredProcesses(GetAllProcesses()); } else { event_selection_set_.AddMonitoredThreads({-1}); } } else if (!event_selection_set_.HasMonitoredTarget()) { if (workload != nullptr) { event_selection_set_.AddMonitoredProcesses({workload->GetPid()}); event_selection_set_.SetEnableCondition(false, true); } else if (!app_package_name_.empty()) { std::set pids = WaitForAppProcesses(app_package_name_); event_selection_set_.AddMonitoredProcesses(pids); } else { LOG(ERROR) << "No threads to monitor. Try `simpleperf help stat` for help\n"; return false; } } else { need_to_check_targets = true; } if (report_per_thread_) { MonitorEachThread(); } // 3. Open perf_event_files and output file if defined. if (!event_selection_set_.OpenEventFiles()) { return false; } std::unique_ptr fp_holder(nullptr, fclose); if (!output_filename_.empty()) { fp_holder.reset(fopen(output_filename_.c_str(), "we")); if (fp_holder == nullptr) { PLOG(ERROR) << "failed to open " << output_filename_; return false; } } else if (out_fd_ != -1) { fp_holder.reset(fdopen(out_fd_.release(), "we")); if (fp_holder == nullptr) { PLOG(ERROR) << "failed to write output."; return false; } } FILE* fp = fp_holder ? fp_holder.get() : stdout; // 4. Add signal/periodic Events. IOEventLoop* loop = event_selection_set_.GetIOEventLoop(); std::chrono::time_point start_time; std::vector counters; if (need_to_check_targets && !event_selection_set_.StopWhenNoMoreTargets()) { return false; } auto exit_loop_callback = [loop]() { return loop->ExitLoop(); }; if (!loop->AddSignalEvents({SIGCHLD, SIGINT, SIGTERM, SIGHUP}, exit_loop_callback)) { return false; } if (stop_signal_fd_ != -1) { if (!loop->AddReadEvent(stop_signal_fd_, exit_loop_callback)) { return false; } } if (duration_in_sec_ != 0) { if (!loop->AddPeriodicEvent(SecondToTimeval(duration_in_sec_), exit_loop_callback)) { return false; } } auto print_counters = [&]() { auto end_time = std::chrono::steady_clock::now(); if (!event_selection_set_.ReadCounters(&counters)) { return false; } double duration_in_sec = std::chrono::duration_cast>(end_time - start_time).count(); if (interval_only_values_) { AdjustToIntervalOnlyValues(counters); } if (!ShowCounters(counters, duration_in_sec, fp)) { return false; } return true; }; if (interval_in_ms_ != 0) { if (!loop->AddPeriodicEvent(SecondToTimeval(interval_in_ms_ / 1000.0), print_counters)) { return false; } } // 5. Count events while workload running. start_time = std::chrono::steady_clock::now(); if (workload != nullptr && !workload->Start()) { return false; } if (!loop->RunLoop()) { return false; } // 6. Read and print counters. if (interval_in_ms_ == 0) { if (!print_counters()) { return false; } } // 7. Print warnings when needed. event_selection_set_.CloseEventFiles(); CheckHardwareCounterMultiplexing(); PrintWarningForInaccurateEvents(); return true; } bool StatCommand::ParseOptions(const std::vector& args, std::vector* non_option_args, ProbeEvents& probe_events) { OptionValueMap options; std::vector> ordered_options; if (!PreprocessOptions(args, GetStatCmdOptionFormats(), &options, &ordered_options, non_option_args)) { return false; } // Process options. system_wide_collection_ = options.PullBoolValue("-a"); if (auto value = options.PullValue("--app"); value) { app_package_name_ = *value->str_value; } csv_ = options.PullBoolValue("--csv"); if (!options.PullDoubleValue("--duration", &duration_in_sec_, 1e-9)) { return false; } if (!options.PullDoubleValue("--interval", &interval_in_ms_, 1e-9)) { return false; } interval_only_values_ = options.PullBoolValue("--interval-only-values"); in_app_context_ = options.PullBoolValue("--in-app"); for (const OptionValue& value : options.PullValues("--kprobe")) { for (const auto& cmd : Split(*value.str_value, ",")) { if (!probe_events.AddKprobe(cmd)) { return false; } } } child_inherit_ = !options.PullBoolValue("--no-inherit"); if (auto value = options.PullValue("-o"); value) { output_filename_ = *value->str_value; } if (auto value = options.PullValue("--out-fd"); value) { out_fd_.reset(static_cast(value->uint_value)); } report_per_core_ = options.PullBoolValue("--per-core"); report_per_thread_ = options.PullBoolValue("--per-thread"); if (auto strs = options.PullStringValues("-p"); !strs.empty()) { if (auto pids = GetPidsFromStrings(strs, true, true); pids) { event_selection_set_.AddMonitoredProcesses(pids.value()); } else { return false; } } print_hw_counter_ = options.PullBoolValue("--print-hw-counter"); if (auto value = options.PullValue("--sort"); value) { sort_keys_ = Split(*value->str_value, ","); } if (auto value = options.PullValue("--stop-signal-fd"); value) { stop_signal_fd_.reset(static_cast(value->uint_value)); } for (const OptionValue& value : options.PullValues("-t")) { if (auto tids = GetTidsFromString(*value.str_value, true); tids) { event_selection_set_.AddMonitoredThreads(tids.value()); } else { return false; } } if (auto value = options.PullValue("--tracepoint-events"); value) { if (!EventTypeManager::Instance().ReadTracepointsFromFile(*value->str_value)) { return false; } } use_devfreq_counters_ = options.PullBoolValue("--use-devfreq-counters"); verbose_mode_ = options.PullBoolValue("--verbose"); CHECK(options.values.empty()); // Process ordered options. for (const auto& pair : ordered_options) { const OptionName& name = pair.first; const OptionValue& value = pair.second; if (name == "--cpu") { if (auto v = GetCpusFromString(*value.str_value); v) { std::set& cpus = v.value(); event_selection_set_.SetCpusForNewEvents(std::vector(cpus.begin(), cpus.end())); } else { return false; } } else if (name == "-e") { for (const auto& event_type : Split(*value.str_value, ",")) { if (!probe_events.CreateProbeEventIfNotExist(event_type)) { return false; } if (!event_selection_set_.AddEventType(event_type)) { return false; } } } else if (name == "--group") { std::vector event_types = Split(*value.str_value, ","); for (const auto& event_type : event_types) { if (!probe_events.CreateProbeEventIfNotExist(event_type)) { return false; } } if (!event_selection_set_.AddEventGroup(event_types)) { return false; } } else if (name == "--tp-filter") { if (!event_selection_set_.SetTracepointFilter(*value.str_value)) { return false; } } else { LOG(ERROR) << "unprocessed option: " << name; return false; } } if (system_wide_collection_ && event_selection_set_.HasMonitoredTarget()) { LOG(ERROR) << "Stat system wide and existing processes/threads can't be " "used at the same time."; return false; } if (system_wide_collection_ && !IsRoot()) { LOG(ERROR) << "System wide profiling needs root privilege."; return false; } if (report_per_core_ || report_per_thread_) { summary_comparator_ = BuildSummaryComparator(sort_keys_, report_per_thread_, report_per_core_); if (!summary_comparator_) { return false; } } return true; } std::optional CheckHardwareCountersOnCpu(int cpu, size_t counters) { if (counters == 0) { return true; } const EventType* event = FindEventTypeByName("cpu-cycles", true); if (event == nullptr) { return std::nullopt; } perf_event_attr attr = CreateDefaultPerfEventAttr(*event); auto workload = Workload::CreateWorkload({"sleep", "0.1"}); if (!workload || !workload->SetCpuAffinity(cpu)) { return std::nullopt; } std::vector> event_fds; for (size_t i = 0; i < counters; i++) { EventFd* group_event_fd = event_fds.empty() ? nullptr : event_fds[0].get(); auto event_fd = EventFd::OpenEventFile(attr, workload->GetPid(), cpu, group_event_fd, "cpu-cycles", false); if (!event_fd) { return false; } event_fds.emplace_back(std::move(event_fd)); } if (!workload->Start() || !workload->WaitChildProcess(true, nullptr)) { return std::nullopt; } for (auto& event_fd : event_fds) { PerfCounter counter; if (!event_fd->ReadCounter(&counter)) { return std::nullopt; } if (counter.time_enabled == 0 || counter.time_enabled > counter.time_running) { return false; } } return true; } std::optional GetHardwareCountersOnCpu(int cpu) { size_t available_counters = 0; while (true) { std::optional result = CheckHardwareCountersOnCpu(cpu, available_counters + 1); if (!result.has_value()) { return std::nullopt; } if (!result.value()) { break; } available_counters++; } return available_counters; } void StatCommand::PrintHardwareCounters() { for (int cpu : GetOnlineCpus()) { std::optional counters = GetHardwareCountersOnCpu(cpu); if (!counters) { // When built as a 32-bit program, we can't set sched_affinity to a 64-bit only CPU. So we // may not be able to get hardware counters on that CPU. LOG(WARNING) << "Failed to get CPU PMU hardware counters on cpu " << cpu; continue; } printf("There are %zu CPU PMU hardware counters available on cpu %d.\n", counters.value(), cpu); } } bool StatCommand::AddDefaultMeasuredEventTypes() { for (auto& name : default_measured_event_types) { // It is not an error when some event types in the default list are not // supported by the kernel. const EventType* type = FindEventTypeByName(name); if (type != nullptr && IsEventAttrSupported(CreateDefaultPerfEventAttr(*type), name)) { if (!event_selection_set_.AddEventType(name)) { return false; } } } if (event_selection_set_.empty()) { LOG(ERROR) << "Failed to add any supported default measured types"; return false; } return true; } void StatCommand::SetEventSelectionFlags() { event_selection_set_.SetInherit(child_inherit_); } void StatCommand::MonitorEachThread() { std::vector threads; for (auto pid : event_selection_set_.GetMonitoredProcesses()) { for (auto tid : GetThreadsInProcess(pid)) { ThreadInfo info; if (GetThreadName(tid, &info.name)) { info.tid = tid; info.pid = pid; thread_info_[tid] = std::move(info); threads.push_back(tid); } } } for (auto tid : event_selection_set_.GetMonitoredThreads()) { ThreadInfo info; if (ReadThreadNameAndPid(tid, &info.name, &info.pid)) { info.tid = tid; thread_info_[tid] = std::move(info); threads.push_back(tid); } } event_selection_set_.ClearMonitoredTargets(); event_selection_set_.AddMonitoredThreads(threads); } void StatCommand::AdjustToIntervalOnlyValues(std::vector& counters) { if (last_sum_values_.size() < counters.size()) { last_sum_values_.resize(counters.size()); } for (size_t i = 0; i < counters.size(); i++) { std::vector& counters_per_event = counters[i].counters; std::vector& last_sum = last_sum_values_[i]; if (last_sum.size() < counters_per_event.size()) { last_sum.resize(counters_per_event.size()); } for (size_t j = 0; j < counters_per_event.size(); j++) { PerfCounter& counter = counters_per_event[j].counter; CounterSum new_sum; new_sum.FromCounter(counter); CounterSum delta = new_sum - last_sum[j]; delta.ToCounter(counter); last_sum[j] = new_sum; } } } bool StatCommand::ShowCounters(const std::vector& counters, double duration_in_sec, FILE* fp) { if (csv_) { fprintf(fp, "Performance counter statistics,\n"); } else { fprintf(fp, "Performance counter statistics:\n\n"); } if (verbose_mode_) { for (auto& counters_info : counters) { for (auto& counter_info : counters_info.counters) { if (csv_) { fprintf(fp, "%s,tid,%d,cpu,%d,count,%" PRIu64 ",time_enabled,%" PRIu64 ",time running,%" PRIu64 ",id,%" PRIu64 ",\n", counters_info.event_name.c_str(), counter_info.tid, counter_info.cpu, counter_info.counter.value, counter_info.counter.time_enabled, counter_info.counter.time_running, counter_info.counter.id); } else { fprintf(fp, "%s(tid %d, cpu %d): count %" PRIu64 ", time_enabled %" PRIu64 ", time running %" PRIu64 ", id %" PRIu64 "\n", counters_info.event_name.c_str(), counter_info.tid, counter_info.cpu, counter_info.counter.value, counter_info.counter.time_enabled, counter_info.counter.time_running, counter_info.counter.id); } } } } CounterSummaryBuilder builder(report_per_thread_, report_per_core_, csv_, thread_info_, summary_comparator_); for (const auto& info : counters) { builder.AddCountersForOneEventType(info); } CounterSummaries summaries(builder.Build(), csv_); summaries.AutoGenerateSummaries(); summaries.GenerateComments(duration_in_sec); summaries.Show(fp); if (csv_) { fprintf(fp, "Total test time,%lf,seconds,\n", duration_in_sec); } else { fprintf(fp, "\nTotal test time: %lf seconds.\n", duration_in_sec); } return true; } void StatCommand::CheckHardwareCounterMultiplexing() { for (const auto& [cpu, hardware_events] : event_selection_set_.GetHardwareCountersForCpus()) { std::optional result = CheckHardwareCountersOnCpu(cpu, hardware_events); if (result.has_value() && !result.value()) { LOG(WARNING) << "It seems the number of hardware events are more than the number of\n" << "available CPU PMU hardware counters. That will trigger hardware counter\n" << "multiplexing. As a result, events are not counted all the time processes\n" << "running, and event counts are smaller than what really happen.\n" << "Use --print-hw-counter to show available hardware counters.\n" #if defined(__ANDROID__) << "If on a rooted device, try --use-devfreq-counters to get more counters.\n" #endif ; break; } } } void StatCommand::PrintWarningForInaccurateEvents() { for (const EventType* event : event_selection_set_.GetEvents()) { if (event->name == "raw-l3d-cache-lmiss-rd") { LOG(WARNING) << "PMU event L3D_CACHE_LMISS_RD might undercount on A510. Please use " "L3D_CACHE_REFILL_RD instead."; break; } } } } // namespace void RegisterStatCommand() { RegisterCommand("stat", [] { return std::unique_ptr(new StatCommand); }); } } // namespace simpleperf