/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define ATRACE_TAG ATRACE_TAG_ALWAYS #include "event_fd.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "environment.h" #include "event_attr.h" #include "event_type.h" #include "perf_event.h" #include "utils.h" namespace simpleperf { static int perf_event_open(const perf_event_attr& attr, pid_t pid, int cpu, int group_fd, unsigned long flags) { // NOLINT return syscall(__NR_perf_event_open, &attr, pid, cpu, group_fd, flags); } std::unique_ptr EventFd::OpenEventFile(const perf_event_attr& attr, pid_t tid, int cpu, EventFd* group_event_fd, const std::string& event_name, bool report_error) { int group_fd = -1; if (group_event_fd != nullptr) { group_fd = group_event_fd->perf_event_fd_; } perf_event_attr real_attr = attr; if (attr.freq) { uint64_t max_sample_freq; if (GetMaxSampleFrequency(&max_sample_freq) && max_sample_freq < attr.sample_freq) { static bool warned = false; if (!warned) { warned = true; LOG(INFO) << "Adjust sample freq to max allowed sample freq " << max_sample_freq; } real_attr.sample_freq = max_sample_freq; } } int perf_event_fd = perf_event_open(real_attr, tid, cpu, group_fd, 0); if (perf_event_fd == -1) { if (report_error) { PLOG(ERROR) << "open perf_event_file (event " << event_name << ", tid " << tid << ", cpu " << cpu << ", group_fd " << group_fd << ") failed"; } else { PLOG(DEBUG) << "open perf_event_file (event " << event_name << ", tid " << tid << ", cpu " << cpu << ", group_fd " << group_fd << ") failed"; } return nullptr; } if (fcntl(perf_event_fd, F_SETFD, FD_CLOEXEC) == -1) { if (report_error) { PLOG(ERROR) << "fcntl(FD_CLOEXEC) for perf_event_file (event " << event_name << ", tid " << tid << ", cpu " << cpu << ", group_fd " << group_fd << ") failed"; } else { PLOG(DEBUG) << "fcntl(FD_CLOEXEC) for perf_event_file (event " << event_name << ", tid " << tid << ", cpu " << cpu << ", group_fd " << group_fd << ") failed"; } return nullptr; } return std::unique_ptr(new EventFd(real_attr, perf_event_fd, event_name, tid, cpu)); } EventFd::~EventFd() { DestroyMappedBuffer(); DestroyAuxBuffer(); close(perf_event_fd_); } std::string EventFd::Name() const { return android::base::StringPrintf("perf_event_file(event %s, tid %d, cpu %d)", event_name_.c_str(), tid_, cpu_); } uint64_t EventFd::Id() const { if (id_ == 0) { if (ioctl(perf_event_fd_, PERF_EVENT_IOC_ID, &id_) != 0) { // PERF_EVENT_IOC_ID isn't available in kernel <= 3.10. Fallback to read() in this case. PerfCounter counter; if (InnerReadCounter(&counter)) { id_ = counter.id; } else { PLOG(WARNING) << "failed to get id of event_fd"; } } } return id_; } bool EventFd::SetEnableEvent(bool enable) { int result = ioctl(perf_event_fd_, enable ? PERF_EVENT_IOC_ENABLE : PERF_EVENT_IOC_DISABLE, 0); if (result < 0) { PLOG(ERROR) << "ioctl(" << (enable ? "enable" : "disable") << ")" << Name() << " failed"; return false; } return true; } bool EventFd::SetFilter(const std::string& filter) { bool success = ioctl(perf_event_fd_, PERF_EVENT_IOC_SET_FILTER, filter.c_str()) >= 0; if (!success) { PLOG(ERROR) << "failed to set filter"; } return success; } bool EventFd::InnerReadCounter(PerfCounter* counter) const { CHECK(counter != nullptr); if (!android::base::ReadFully(perf_event_fd_, counter, sizeof(*counter))) { PLOG(ERROR) << "ReadCounter from " << Name() << " failed"; return false; } return true; } bool EventFd::ReadCounter(PerfCounter* counter) { if (!InnerReadCounter(counter)) { return false; } // Trace is always available to systrace if enabled if (tid_ > 0) { ATRACE_INT64( android::base::StringPrintf("%s_tid%d_cpu%d", event_name_.c_str(), tid_, cpu_).c_str(), counter->value - last_counter_value_); } else { ATRACE_INT64(android::base::StringPrintf("%s_cpu%d", event_name_.c_str(), cpu_).c_str(), counter->value - last_counter_value_); } last_counter_value_ = counter->value; return true; } bool EventFd::CreateMappedBuffer(size_t mmap_pages, bool report_error) { CHECK(IsPowerOfTwo(mmap_pages)); size_t page_size = sysconf(_SC_PAGE_SIZE); size_t mmap_len = (mmap_pages + 1) * page_size; void* mmap_addr = mmap(nullptr, mmap_len, PROT_READ | PROT_WRITE, MAP_SHARED, perf_event_fd_, 0); if (mmap_addr == MAP_FAILED) { bool is_perm_error = (errno == EPERM); if (report_error) { PLOG(ERROR) << "mmap(" << mmap_pages << ") failed for " << Name(); } else { PLOG(DEBUG) << "mmap(" << mmap_pages << ") failed for " << Name(); } if (report_error && is_perm_error) { LOG(ERROR) << "It seems the kernel doesn't allow allocating enough " << "buffer for dumping samples, consider decreasing mmap pages(-m)."; } return false; } mmap_addr_ = mmap_addr; mmap_len_ = mmap_len; mmap_metadata_page_ = reinterpret_cast(mmap_addr_); mmap_data_buffer_ = reinterpret_cast(mmap_addr_) + page_size; mmap_data_buffer_size_ = mmap_len_ - page_size; return true; } bool EventFd::ShareMappedBuffer(const EventFd& event_fd, bool report_error) { CHECK(!HasMappedBuffer()); CHECK(event_fd.HasMappedBuffer()); int result = ioctl(perf_event_fd_, PERF_EVENT_IOC_SET_OUTPUT, event_fd.perf_event_fd_); if (result != 0) { if (report_error) { PLOG(ERROR) << "failed to share mapped buffer of " << event_fd.perf_event_fd_ << " with " << perf_event_fd_; } return false; } return true; } void EventFd::DestroyMappedBuffer() { if (HasMappedBuffer()) { munmap(mmap_addr_, mmap_len_); mmap_addr_ = nullptr; mmap_len_ = 0; mmap_metadata_page_ = nullptr; mmap_data_buffer_ = nullptr; mmap_data_buffer_size_ = 0; } } std::vector EventFd::GetAvailableMmapData() { size_t data_pos; size_t data_size = GetAvailableMmapDataSize(data_pos); std::vector data(data_size); if (data_size > 0) { size_t copy_size = std::min(data_size, mmap_data_buffer_size_ - data_pos); memcpy(&data[0], mmap_data_buffer_ + data_pos, copy_size); if (copy_size < data_size) { memcpy(&data[copy_size], mmap_data_buffer_, data_size - copy_size); } DiscardMmapData(data_size); } return data; } size_t EventFd::GetAvailableMmapDataSize(size_t& data_pos) { // The mmap_data_buffer is used as a ring buffer between the kernel and // simpleperf. The kernel continuously writes records to the buffer, and // simpleperf continuously read records out. // _________________________________________ // buffer | can write | can read | can write | // ^ ^ // read_head write_head // // So simpleperf can read records in [read_head, write_head), and the kernel // can write records in [write_head, read_head). The kernel is responsible // for updating write_head, and simpleperf is responsible for updating // read_head. uint64_t write_head = mmap_metadata_page_->data_head; uint64_t read_head = mmap_metadata_page_->data_tail; // The kernel may decrease data_head temporarily (http://b/132446871), making // write_head < read_head. So check it to avoid available data size underflow. if (write_head <= read_head) { // No available data. return 0; } // rmb() used to ensure reading data after reading data_head. __sync_synchronize(); data_pos = read_head & (mmap_data_buffer_size_ - 1); return write_head - read_head; } void EventFd::DiscardMmapData(size_t discard_size) { // mb() used to ensure finish reading data before writing data_tail. __sync_synchronize(); mmap_metadata_page_->data_tail += discard_size; } bool EventFd::CreateAuxBuffer(size_t aux_buffer_size, bool report_error) { CHECK(HasMappedBuffer()); CHECK(IsPowerOfTwo(aux_buffer_size)); mmap_metadata_page_->aux_offset = mmap_len_; mmap_metadata_page_->aux_size = aux_buffer_size; mmap_metadata_page_->aux_head = 0; mmap_metadata_page_->aux_tail = 0; void* mmap_addr = mmap(nullptr, aux_buffer_size, PROT_READ | PROT_WRITE, MAP_SHARED, perf_event_fd_, mmap_metadata_page_->aux_offset); if (mmap_addr == MAP_FAILED) { if (report_error) { PLOG(ERROR) << "failed to mmap aux buffer of size " << aux_buffer_size << " for " << Name(); } else { PLOG(DEBUG) << "failed to mmap aux buffer of size " << aux_buffer_size << " for " << Name(); } return false; } aux_buffer_ = static_cast(mmap_addr); aux_buffer_size_ = aux_buffer_size; return true; } void EventFd::DestroyAuxBuffer() { if (HasAuxBuffer()) { munmap(aux_buffer_, aux_buffer_size_); aux_buffer_ = nullptr; aux_buffer_size_ = 0; } } uint64_t EventFd::GetAvailableAuxData(char** buf1, size_t* size1, char** buf2, size_t* size2) { // Aux buffer is similar to mapped_data_buffer. See comments in GetAvailableMmapData(). uint64_t write_head = mmap_metadata_page_->aux_head; uint64_t read_head = mmap_metadata_page_->aux_tail; if (write_head <= read_head) { *size1 = *size2 = 0; return 0; // No available data. } // rmb() used to ensure reading data after reading aux_head. __sync_synchronize(); size_t data_pos = read_head & (aux_buffer_size_ - 1); size_t data_size = write_head - read_head; *buf1 = aux_buffer_ + data_pos; if (data_size <= aux_buffer_size_ - data_pos) { *size1 = data_size; *size2 = 0; } else { *size1 = aux_buffer_size_ - data_pos; *buf2 = aux_buffer_; *size2 = data_size - *size1; } return read_head; } void EventFd::DiscardAuxData(size_t discard_size) { // mb() used to ensure finish reading data before writing aux_tail. __sync_synchronize(); mmap_metadata_page_->aux_tail += discard_size; } bool EventFd::StartPolling(IOEventLoop& loop, const std::function& callback) { ioevent_ref_ = loop.AddReadEvent(perf_event_fd_, callback); return ioevent_ref_ != nullptr; } bool EventFd::StopPolling() { return IOEventLoop::DelEvent(ioevent_ref_); } bool IsEventAttrSupported(const perf_event_attr& attr, const std::string& event_name) { return EventFd::OpenEventFile(attr, getpid(), -1, nullptr, event_name, false) != nullptr; } } // namespace simpleperf