/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "utils.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include <7zCrc.h> #include #include #include "RegEx.h" #include "environment.h" namespace simpleperf { using android::base::ParseInt; using android::base::Split; using android::base::StringPrintf; void OneTimeFreeAllocator::Clear() { for (auto& p : v_) { delete[] p; } v_.clear(); cur_ = nullptr; end_ = nullptr; } const char* OneTimeFreeAllocator::AllocateString(std::string_view s) { size_t size = s.size() + 1; if (cur_ + size > end_) { size_t alloc_size = std::max(size, unit_size_); char* p = new char[alloc_size]; v_.push_back(p); cur_ = p; end_ = p + alloc_size; } memcpy(cur_, s.data(), s.size()); cur_[s.size()] = '\0'; const char* result = cur_; cur_ += size; return result; } android::base::unique_fd FileHelper::OpenReadOnly(const std::string& filename) { int fd = TEMP_FAILURE_RETRY(open(filename.c_str(), O_RDONLY | O_BINARY)); return android::base::unique_fd(fd); } android::base::unique_fd FileHelper::OpenWriteOnly(const std::string& filename) { int fd = TEMP_FAILURE_RETRY(open(filename.c_str(), O_WRONLY | O_BINARY | O_CREAT, 0644)); return android::base::unique_fd(fd); } std::unique_ptr ArchiveHelper::CreateInstance(const std::string& filename) { android::base::unique_fd fd = FileHelper::OpenReadOnly(filename); if (fd == -1) { return nullptr; } // Simpleperf relies on ArchiveHelper to check if a file is zip file. We expect much more elf // files than zip files in a process map. In order to detect invalid zip files fast, we add a // check of magic number here. Note that OpenArchiveFd() detects invalid zip files in a thorough // way, but it usually needs reading at least 64K file data. static const char zip_preamble[] = {0x50, 0x4b, 0x03, 0x04}; char buf[4]; if (!android::base::ReadFully(fd, buf, 4) || memcmp(buf, zip_preamble, 4) != 0) { return nullptr; } if (lseek(fd, 0, SEEK_SET) == -1) { return nullptr; } ZipArchiveHandle handle; int result = OpenArchiveFd(fd.release(), filename.c_str(), &handle); if (result != 0) { LOG(ERROR) << "Failed to open archive " << filename << ": " << ErrorCodeString(result); return nullptr; } return std::unique_ptr(new ArchiveHelper(handle, filename)); } ArchiveHelper::~ArchiveHelper() { CloseArchive(handle_); } bool ArchiveHelper::IterateEntries( const std::function& callback) { void* iteration_cookie; if (StartIteration(handle_, &iteration_cookie) < 0) { LOG(ERROR) << "Failed to iterate " << filename_; return false; } ZipEntry zentry; std::string zname; int result; while ((result = Next(iteration_cookie, &zentry, &zname)) == 0) { if (!callback(zentry, zname)) { break; } } EndIteration(iteration_cookie); if (result == -2) { LOG(ERROR) << "Failed to iterate " << filename_; return false; } return true; } bool ArchiveHelper::FindEntry(const std::string& name, ZipEntry* entry) { int result = ::FindEntry(handle_, name, entry); if (result != 0) { LOG(ERROR) << "Failed to find " << name << " in " << filename_; return false; } return true; } bool ArchiveHelper::GetEntryData(ZipEntry& entry, std::vector* data) { data->resize(entry.uncompressed_length); if (ExtractToMemory(handle_, &entry, data->data(), data->size()) != 0) { LOG(ERROR) << "Failed to extract entry at " << entry.offset << " in " << filename_; return false; } return true; } int ArchiveHelper::GetFd() { return GetFileDescriptor(handle_); } void PrintIndented(size_t indent, const char* fmt, ...) { va_list ap; va_start(ap, fmt); printf("%*s", static_cast(indent * 2), ""); vprintf(fmt, ap); va_end(ap); } void FprintIndented(FILE* fp, size_t indent, const char* fmt, ...) { va_list ap; va_start(ap, fmt); fprintf(fp, "%*s", static_cast(indent * 2), ""); vfprintf(fp, fmt, ap); va_end(ap); } bool IsPowerOfTwo(uint64_t value) { return (value != 0 && ((value & (value - 1)) == 0)); } std::vector GetEntriesInDir(const std::string& dirpath) { std::vector result; DIR* dir = opendir(dirpath.c_str()); if (dir == nullptr) { PLOG(DEBUG) << "can't open dir " << dirpath; return result; } dirent* entry; while ((entry = readdir(dir)) != nullptr) { if (strcmp(entry->d_name, ".") == 0 || strcmp(entry->d_name, "..") == 0) { continue; } result.push_back(entry->d_name); } closedir(dir); return result; } std::vector GetSubDirs(const std::string& dirpath) { std::vector entries = GetEntriesInDir(dirpath); std::vector result; for (size_t i = 0; i < entries.size(); ++i) { if (IsDir(dirpath + OS_PATH_SEPARATOR + entries[i])) { result.push_back(std::move(entries[i])); } } return result; } bool IsDir(const std::string& dirpath) { struct stat st; if (stat(dirpath.c_str(), &st) == 0) { if (S_ISDIR(st.st_mode)) { return true; } } return false; } bool IsRegularFile(const std::string& filename) { struct stat st; if (stat(filename.c_str(), &st) == 0) { if (S_ISREG(st.st_mode)) { return true; } } return false; } uint64_t GetFileSize(const std::string& filename) { struct stat st; if (stat(filename.c_str(), &st) == 0) { return static_cast(st.st_size); } return 0; } bool MkdirWithParents(const std::string& path) { size_t prev_end = 0; while (prev_end < path.size()) { size_t next_end = path.find('/', prev_end + 1); if (next_end == std::string::npos) { break; } std::string dir_path = path.substr(0, next_end); if (!IsDir(dir_path)) { #if defined(_WIN32) int ret = mkdir(dir_path.c_str()); #else int ret = mkdir(dir_path.c_str(), 0755); #endif if (ret != 0) { PLOG(ERROR) << "failed to create dir " << dir_path; return false; } } prev_end = next_end; } return true; } static void* xz_alloc(ISzAllocPtr, size_t size) { return malloc(size); } static void xz_free(ISzAllocPtr, void* address) { free(address); } bool XzDecompress(const std::string& compressed_data, std::string* decompressed_data) { ISzAlloc alloc; CXzUnpacker state; alloc.Alloc = xz_alloc; alloc.Free = xz_free; XzUnpacker_Construct(&state, &alloc); CrcGenerateTable(); Crc64GenerateTable(); size_t src_offset = 0; size_t dst_offset = 0; std::string dst(compressed_data.size(), ' '); ECoderStatus status = CODER_STATUS_NOT_FINISHED; while (status == CODER_STATUS_NOT_FINISHED) { dst.resize(dst.size() * 2); size_t src_remaining = compressed_data.size() - src_offset; size_t dst_remaining = dst.size() - dst_offset; int res = XzUnpacker_Code(&state, reinterpret_cast(&dst[dst_offset]), &dst_remaining, reinterpret_cast(&compressed_data[src_offset]), &src_remaining, true, CODER_FINISH_ANY, &status); if (res != SZ_OK) { LOG(ERROR) << "LZMA decompression failed with error " << res; XzUnpacker_Free(&state); return false; } src_offset += src_remaining; dst_offset += dst_remaining; } XzUnpacker_Free(&state); if (!XzUnpacker_IsStreamWasFinished(&state)) { LOG(ERROR) << "LZMA decompresstion failed due to incomplete stream"; return false; } dst.resize(dst_offset); *decompressed_data = std::move(dst); return true; } static std::map log_severity_map = { {"verbose", android::base::VERBOSE}, {"debug", android::base::DEBUG}, {"info", android::base::INFO}, {"warning", android::base::WARNING}, {"error", android::base::ERROR}, {"fatal", android::base::FATAL}, }; bool GetLogSeverity(const std::string& name, android::base::LogSeverity* severity) { auto it = log_severity_map.find(name); if (it != log_severity_map.end()) { *severity = it->second; return true; } return false; } std::string GetLogSeverityName() { android::base::LogSeverity severity = android::base::GetMinimumLogSeverity(); for (auto& pair : log_severity_map) { if (severity == pair.second) { return pair.first; } } return "info"; } bool IsRoot() { static int is_root = -1; if (is_root == -1) { #if defined(__linux__) is_root = (getuid() == 0) ? 1 : 0; #else is_root = 0; #endif } return is_root == 1; } size_t GetPageSize() { #if defined(__linux__) return sysconf(_SC_PAGE_SIZE); #else return 4096; #endif } uint64_t ConvertBytesToValue(const char* bytes, uint32_t size) { if (size > 8) { LOG(FATAL) << "unexpected size " << size << " in ConvertBytesToValue"; } uint64_t result = 0; int shift = 0; for (uint32_t i = 0; i < size; ++i) { uint64_t tmp = static_cast(bytes[i]); result |= tmp << shift; shift += 8; } return result; } timeval SecondToTimeval(double time_in_sec) { timeval tv; tv.tv_sec = static_cast(time_in_sec); tv.tv_usec = static_cast((time_in_sec - tv.tv_sec) * 1000000); return tv; } constexpr int SIMPLEPERF_VERSION = 1; std::string GetSimpleperfVersion() { return StringPrintf("%d.build.%s", SIMPLEPERF_VERSION, android::build::GetBuildNumber().c_str()); } // Parse a line like: 0,1-3, 5, 7-8 std::optional> GetCpusFromString(const std::string& s) { std::string str; for (char c : s) { if (!isspace(c)) { str += c; } } std::set cpus; int cpu1; int cpu2; for (const std::string& p : Split(str, ",")) { size_t split_pos = p.find('-'); if (split_pos == std::string::npos) { if (!ParseInt(p, &cpu1, 0)) { LOG(ERROR) << "failed to parse cpu: " << p; return std::nullopt; } cpus.insert(cpu1); } else { if (!ParseInt(p.substr(0, split_pos), &cpu1, 0) || !ParseInt(p.substr(split_pos + 1), &cpu2, 0) || cpu1 > cpu2) { LOG(ERROR) << "failed to parse cpu: " << p; return std::nullopt; } while (cpu1 <= cpu2) { cpus.insert(cpu1++); } } } return cpus; } std::optional> GetTidsFromString(const std::string& s, bool check_if_exists) { std::set tids; for (const auto& p : Split(s, ",")) { int tid; if (!ParseInt(p.c_str(), &tid, 0)) { LOG(ERROR) << "Invalid tid '" << p << "'"; return std::nullopt; } if (check_if_exists && !IsDir(StringPrintf("/proc/%d", tid))) { LOG(ERROR) << "Non existing thread '" << tid << "'"; return std::nullopt; } tids.insert(tid); } return tids; } std::optional> GetPidsFromStrings(const std::vector& strs, bool check_if_exists, bool support_progress_name_regex) { std::set pids; std::vector> regs; for (const auto& s : strs) { for (const auto& p : Split(s, ",")) { int pid; if (ParseInt(p.c_str(), &pid, 0)) { if (check_if_exists && !IsDir(StringPrintf("/proc/%d", pid))) { LOG(ERROR) << "no process with pid " << pid; return std::nullopt; } pids.insert(pid); } else if (support_progress_name_regex) { auto reg = RegEx::Create(p); if (!reg) { return std::nullopt; } regs.emplace_back(std::move(reg)); } else { LOG(ERROR) << "invalid pid: " << p; return std::nullopt; } } } if (!regs.empty()) { #if defined(__linux__) for (pid_t pid : GetAllProcesses()) { std::string process_name = GetCompleteProcessName(pid); if (process_name.empty()) { continue; } for (const auto& reg : regs) { if (reg->Search(process_name)) { pids.insert(pid); break; } } } #else // defined(__linux__) LOG(ERROR) << "progress name regex isn't supported"; return std::nullopt; #endif // defined(__linux__) } return pids; } size_t SafeStrlen(const char* s, const char* end) { const char* p = s; while (p < end && *p != '\0') { p++; } return p - s; } OverflowResult SafeAdd(uint64_t a, uint64_t b) { OverflowResult result; if (__builtin_add_overflow(a, b, &result.value)) { result.overflow = true; } return result; } void OverflowSafeAdd(uint64_t& dest, uint64_t add) { if (__builtin_add_overflow(dest, add, &dest)) { LOG(WARNING) << "Branch count overflow happened."; dest = UINT64_MAX; } } // Convert big numbers to human friendly mode. For example, // 1000000 will be converted to 1,000,000. std::string ReadableCount(uint64_t count) { std::string s = std::to_string(count); for (size_t i = s.size() - 1, j = 1; i > 0; --i, ++j) { if (j == 3) { s.insert(s.begin() + i, ','); j = 0; } } return s; } } // namespace simpleperf