summaryrefslogtreecommitdiff
path: root/simpleperf/cmd_inject.cpp
blob: d90bd51736215fd4453fdfee5427f1ca2c488e7c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
/*
 * Copyright (C) 2019 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <stdio.h>
#include <unistd.h>

#include <memory>
#include <optional>
#include <regex>
#include <string>

#include <android-base/parseint.h>

#include "ETMDecoder.h"
#include "cmd_inject_impl.h"
#include "command.h"
#include "record_file.h"
#include "system/extras/simpleperf/etm_branch_list.pb.h"
#include "thread_tree.h"
#include "utils.h"

namespace simpleperf {

std::string BranchToProtoString(const std::vector<bool>& branch) {
  size_t bytes = (branch.size() + 7) / 8;
  std::string res(bytes, '\0');
  for (size_t i = 0; i < branch.size(); i++) {
    if (branch[i]) {
      res[i >> 3] |= 1 << (i & 7);
    }
  }
  return res;
}

std::vector<bool> ProtoStringToBranch(const std::string& s, size_t bit_size) {
  std::vector<bool> branch(bit_size, false);
  for (size_t i = 0; i < bit_size; i++) {
    if (s[i >> 3] & (1 << (i & 7))) {
      branch[i] = true;
    }
  }
  return branch;
}

namespace {

using AddrPair = std::pair<uint64_t, uint64_t>;

struct AddrPairHash {
  size_t operator()(const AddrPair& ap) const noexcept {
    size_t seed = 0;
    HashCombine(seed, ap.first);
    HashCombine(seed, ap.second);
    return seed;
  }
};

enum class OutputFormat {
  AutoFDO,
  BranchList,
};

struct AutoFDOBinaryInfo {
  std::unordered_map<AddrPair, uint64_t, AddrPairHash> range_count_map;
  std::unordered_map<AddrPair, uint64_t, AddrPairHash> branch_count_map;
};

using BranchListBinaryInfo =
    std::unordered_map<uint64_t, std::unordered_map<std::vector<bool>, uint64_t>>;

class ThreadTreeWithFilter : public ThreadTree {
 public:
  void ExcludePid(pid_t pid) { exclude_pid_ = pid; }

  ThreadEntry* FindThread(int tid) const override {
    ThreadEntry* thread = ThreadTree::FindThread(tid);
    if (thread != nullptr && exclude_pid_ && thread->pid == exclude_pid_) {
      return nullptr;
    }
    return thread;
  }

 private:
  std::optional<pid_t> exclude_pid_;
};

constexpr const char* ETM_BRANCH_LIST_PROTO_MAGIC = "simpleperf:EtmBranchList";

class InjectCommand : public Command {
 public:
  InjectCommand()
      : Command("inject", "parse etm instruction tracing data",
                // clang-format off
"Usage: simpleperf inject [options]\n"
"--binary binary_name         Generate data only for binaries matching binary_name regex.\n"
"-i <file>                    Input file. Default is perf.data. Support below formats:\n"
"                               1. perf.data generated by recording cs-etm event type.\n"
"                               2. branch_list file generated by `inject --output branch-list`.\n"
"-o <file>                    output file. Default is perf_inject.data.\n"
"--output <format>            Select output file format:\n"
"                               autofdo      -- text format accepted by TextSampleReader\n"
"                                               of AutoFDO\n"
"                               branch-list  -- protobuf file in etm_branch_list.proto\n"
"                             Default is autofdo.\n"
"--dump-etm type1,type2,...   Dump etm data. A type is one of raw, packet and element.\n"
"--exclude-perf               Exclude trace data for the recording process.\n"
"--symdir <dir>               Look for binaries in a directory recursively.\n"
"\n"
"Examples:\n"
"1. Generate autofdo text output.\n"
"$ simpleperf inject -i perf.data -o autofdo.txt --output autofdo\n"
"\n"
"2. Generate branch list proto, then convert to autofdo text.\n"
"$ simpleperf inject -i perf.data -o branch_list.data --output branch-list\n"
"$ simpleperf inject -i branch_list.data -o autofdo.txt --output autofdo\n"
                // clang-format on
                ),
        output_fp_(nullptr, fclose) {}

  bool Run(const std::vector<std::string>& args) override {
    GOOGLE_PROTOBUF_VERIFY_VERSION;
    // 1. Parse options.
    if (!ParseOptions(args)) {
      return false;
    }

    // 2. Open output file.
    const char* open_mode = (output_format_ == OutputFormat::AutoFDO) ? "w" : "wb";
    output_fp_.reset(fopen(output_filename_.c_str(), open_mode));
    if (!output_fp_) {
      PLOG(ERROR) << "failed to write to " << output_filename_;
      return false;
    }

    // 3. Process input file.
    if (!ProcessInputFile()) {
      return false;
    }

    // 4. Write output file.
    if (!WriteOutput()) {
      return false;
    }
    output_fp_.reset(nullptr);
    return true;
  }

 private:
  bool ParseOptions(const std::vector<std::string>& args) {
    const OptionFormatMap option_formats = {
        {"--binary", {OptionValueType::STRING, OptionType::SINGLE}},
        {"--dump-etm", {OptionValueType::STRING, OptionType::SINGLE}},
        {"--exclude-perf", {OptionValueType::NONE, OptionType::SINGLE}},
        {"-i", {OptionValueType::STRING, OptionType::SINGLE}},
        {"-o", {OptionValueType::STRING, OptionType::SINGLE}},
        {"--output", {OptionValueType::STRING, OptionType::SINGLE}},
        {"--symdir", {OptionValueType::STRING, OptionType::MULTIPLE}},
    };
    OptionValueMap options;
    std::vector<std::pair<OptionName, OptionValue>> ordered_options;
    if (!PreprocessOptions(args, option_formats, &options, &ordered_options, nullptr)) {
      return false;
    }

    if (auto value = options.PullValue("--binary"); value) {
      binary_name_regex_ = *value->str_value;
    }
    if (auto value = options.PullValue("--dump-etm"); value) {
      if (!ParseEtmDumpOption(*value->str_value, &etm_dump_option_)) {
        return false;
      }
    }
    exclude_perf_ = options.PullBoolValue("--exclude-perf");
    options.PullStringValue("-i", &input_filename_);
    options.PullStringValue("-o", &output_filename_);
    if (auto value = options.PullValue("--output"); value) {
      const std::string& output = *value->str_value;
      if (output == "autofdo") {
        output_format_ = OutputFormat::AutoFDO;
      } else if (output == "branch-list") {
        output_format_ = OutputFormat::BranchList;
      } else {
        LOG(ERROR) << "unknown format in --output option: " << output;
        return false;
      }
    }
    if (auto value = options.PullValue("--symdir"); value) {
      if (!Dso::AddSymbolDir(*value->str_value)) {
        return false;
      }
    }
    CHECK(options.values.empty());
    return true;
  }

  bool ProcessInputFile() {
    if (IsPerfDataFile(input_filename_)) {
      record_file_reader_ = RecordFileReader::CreateInstance(input_filename_);
      if (!record_file_reader_) {
        return false;
      }
      if (exclude_perf_) {
        const auto& info_map = record_file_reader_->GetMetaInfoFeature();
        if (auto it = info_map.find("recording_process"); it == info_map.end()) {
          LOG(ERROR) << input_filename_ << " doesn't support --exclude-perf";
          return false;
        } else {
          int pid;
          if (!android::base::ParseInt(it->second, &pid, 0)) {
            LOG(ERROR) << "invalid recording_process " << it->second;
            return false;
          }
          thread_tree_.ExcludePid(pid);
        }
      }
      record_file_reader_->LoadBuildIdAndFileFeatures(thread_tree_);
      if (!record_file_reader_->ReadDataSection(
              [this](auto r) { return ProcessRecord(r.get()); })) {
        return false;
      }
      if (etm_decoder_ && !etm_decoder_->FinishData()) {
        return false;
      }
      return true;
    }
    return ProcessBranchListFile();
  }

  bool ProcessRecord(Record* r) {
    thread_tree_.Update(*r);
    if (r->type() == PERF_RECORD_AUXTRACE_INFO) {
      etm_decoder_ = ETMDecoder::Create(*static_cast<AuxTraceInfoRecord*>(r), thread_tree_);
      if (!etm_decoder_) {
        return false;
      }
      etm_decoder_->EnableDump(etm_dump_option_);
      if (output_format_ == OutputFormat::AutoFDO) {
        etm_decoder_->RegisterCallback(
            [this](const ETMInstrRange& range) { ProcessInstrRange(range); });
      } else if (output_format_ == OutputFormat::BranchList) {
        etm_decoder_->RegisterCallback(
            [this](const ETMBranchList& branch) { ProcessBranchList(branch); });
      }
    } else if (r->type() == PERF_RECORD_AUX) {
      AuxRecord* aux = static_cast<AuxRecord*>(r);
      uint64_t aux_size = aux->data->aux_size;
      if (aux_size > 0) {
        if (aux_data_buffer_.size() < aux_size) {
          aux_data_buffer_.resize(aux_size);
        }
        if (!record_file_reader_->ReadAuxData(aux->Cpu(), aux->data->aux_offset,
                                              aux_data_buffer_.data(), aux_size)) {
          LOG(ERROR) << "failed to read aux data";
          return false;
        }
        return etm_decoder_->ProcessData(aux_data_buffer_.data(), aux_size);
      }
    } else if (r->type() == PERF_RECORD_MMAP && r->InKernel()) {
      auto& mmap_r = *static_cast<MmapRecord*>(r);
      if (android::base::StartsWith(mmap_r.filename, DEFAULT_KERNEL_MMAP_NAME)) {
        kernel_map_start_addr_ = mmap_r.data->addr;
      }
    }
    return true;
  }

  std::unordered_map<Dso*, bool> dso_filter_cache;
  bool FilterDso(Dso* dso) {
    auto lookup = dso_filter_cache.find(dso);
    if (lookup != dso_filter_cache.end()) {
      return lookup->second;
    }
    bool match = std::regex_search(dso->Path(), binary_name_regex_);
    dso_filter_cache.insert({dso, match});
    return match;
  }

  void ProcessInstrRange(const ETMInstrRange& instr_range) {
    if (!FilterDso(instr_range.dso)) {
      return;
    }

    auto& binary = autofdo_binary_map_[instr_range.dso];
    binary.range_count_map[AddrPair(instr_range.start_addr, instr_range.end_addr)] +=
        instr_range.branch_taken_count + instr_range.branch_not_taken_count;
    if (instr_range.branch_taken_count > 0) {
      binary.branch_count_map[AddrPair(instr_range.end_addr, instr_range.branch_to_addr)] +=
          instr_range.branch_taken_count;
    }
  }

  void ProcessBranchList(const ETMBranchList& branch_list) {
    if (!FilterDso(branch_list.dso)) {
      return;
    }

    ++branch_list_binary_map_[branch_list.dso][branch_list.addr][branch_list.branch];
  }

  bool ProcessBranchListFile() {
    if (output_format_ != OutputFormat::AutoFDO) {
      LOG(ERROR) << "Only support autofdo output when given a branch list file.";
      return false;
    }
    // 1. Load EtmBranchList msg from proto file.
    auto fd = FileHelper::OpenReadOnly(input_filename_);
    if (!fd.ok()) {
      PLOG(ERROR) << "failed to open " << input_filename_;
      return false;
    }
    proto::ETMBranchList branch_list_proto;
    if (!branch_list_proto.ParseFromFileDescriptor(fd)) {
      PLOG(ERROR) << "failed to read msg from " << input_filename_;
      return false;
    }
    if (branch_list_proto.magic() != ETM_BRANCH_LIST_PROTO_MAGIC) {
      PLOG(ERROR) << "file not in format etm_branch_list.proto: " << input_filename_;
      return false;
    }

    // 2. Build branch map for each binary, convert them to instr ranges.
    auto callback = [this](const ETMInstrRange& range) { ProcessInstrRange(range); };
    auto check_build_id = [](Dso* dso, const BuildId& expected_build_id) {
      if (expected_build_id.IsEmpty()) {
        return true;
      }
      BuildId build_id;
      return GetBuildIdFromDsoPath(dso->GetDebugFilePath(), &build_id) &&
             build_id == expected_build_id;
    };

    for (size_t i = 0; i < branch_list_proto.binaries_size(); i++) {
      const auto& binary_proto = branch_list_proto.binaries(i);
      BuildId build_id(binary_proto.build_id());
      std::optional<DsoType> dso_type = ToDsoType(binary_proto.type());
      if (!dso_type.has_value()) {
        return false;
      }
      std::unique_ptr<Dso> dso =
          Dso::CreateDsoWithBuildId(dso_type.value(), binary_proto.path(), build_id);
      if (!dso || !FilterDso(dso.get()) || !check_build_id(dso.get(), build_id)) {
        continue;
      }
      // Dso is used in ETMInstrRange in post process, so need to extend its lifetime.
      Dso* dso_p = dso.get();
      branch_list_dso_v_.emplace_back(dso.release());
      auto branch_map = BuildBranchMap(binary_proto);

      if (dso_p->type() == DSO_KERNEL) {
        if (!ModifyBranchMapForKernel(binary_proto, dso_p, branch_map)) {
          return false;
        }
      }

      if (auto result = ConvertBranchMapToInstrRanges(dso_p, branch_map, callback); !result.ok()) {
        LOG(WARNING) << "failed to build instr ranges for binary " << dso_p->Path() << ": "
                     << result.error();
      }
    }
    return true;
  }

  BranchMap BuildBranchMap(const proto::ETMBranchList_Binary& binary_proto) {
    BranchMap branch_map;
    for (size_t i = 0; i < binary_proto.addrs_size(); i++) {
      const auto& addr_proto = binary_proto.addrs(i);
      auto& b_map = branch_map[addr_proto.addr()];
      for (size_t j = 0; j < addr_proto.branches_size(); j++) {
        const auto& branch_proto = addr_proto.branches(j);
        std::vector<bool> branch =
            ProtoStringToBranch(branch_proto.branch(), branch_proto.branch_size());
        b_map[branch] = branch_proto.count();
      }
    }
    return branch_map;
  }

  bool ModifyBranchMapForKernel(const proto::ETMBranchList_Binary& binary_proto, Dso* dso,
                                BranchMap& branch_map) {
    if (!binary_proto.has_kernel_info()) {
      LOG(ERROR) << "no kernel info";
      return false;
    }
    uint64_t kernel_map_start_addr = binary_proto.kernel_info().kernel_start_addr();
    if (kernel_map_start_addr == 0) {
      return true;
    }
    // Addresses are still kernel ip addrs in memory. Need to convert them to vaddrs in vmlinux.
    BranchMap new_branch_map;
    for (auto& p : branch_map) {
      uint64_t vaddr_in_file = dso->IpToVaddrInFile(p.first, kernel_map_start_addr, 0);
      new_branch_map[vaddr_in_file] = std::move(p.second);
    }
    branch_map = std::move(new_branch_map);
    return true;
  }

  bool WriteOutput() {
    if (output_format_ == OutputFormat::AutoFDO) {
      GenerateInstrRange();
      return true;
    }
    CHECK(output_format_ == OutputFormat::BranchList);
    return GenerateBranchList();
  }

  void GenerateInstrRange() {
    // autofdo_binary_map is used to store instruction ranges, which can have a large amount. And it
    // has a larger access time (instruction ranges * executed time). So it's better to use
    // unorder_maps to speed up access time. But we also want a stable output here, to compare
    // output changes result from code changes. So generate a sorted output here.
    std::vector<Dso*> dso_v;
    for (auto& p : autofdo_binary_map_) {
      dso_v.emplace_back(p.first);
    }
    std::sort(dso_v.begin(), dso_v.end(), [](Dso* d1, Dso* d2) { return d1->Path() < d2->Path(); });
    if (dso_v.size() > 1) {
      fprintf(output_fp_.get(),
              "// Please split this file. AutoFDO only accepts profile for one binary.\n");
    }
    for (auto dso : dso_v) {
      const AutoFDOBinaryInfo& binary = autofdo_binary_map_[dso];
      // AutoFDO text format needs file_offsets instead of virtual addrs in a binary. And it uses
      // below formula: vaddr = file_offset + GetFirstLoadSegmentVaddr().
      uint64_t first_load_segment_addr = GetFirstLoadSegmentVaddr(dso);

      auto to_offset = [&](uint64_t vaddr) -> uint64_t {
        if (vaddr == 0) {
          return 0;
        }
        CHECK_GE(vaddr, first_load_segment_addr);
        return vaddr - first_load_segment_addr;
      };

      // Write range_count_map.
      std::map<AddrPair, uint64_t> range_count_map(binary.range_count_map.begin(),
                                                   binary.range_count_map.end());
      fprintf(output_fp_.get(), "%zu\n", range_count_map.size());
      for (const auto& pair2 : range_count_map) {
        const AddrPair& addr_range = pair2.first;
        uint64_t count = pair2.second;

        fprintf(output_fp_.get(), "%" PRIx64 "-%" PRIx64 ":%" PRIu64 "\n",
                to_offset(addr_range.first), to_offset(addr_range.second), count);
      }

      // Write addr_count_map.
      fprintf(output_fp_.get(), "0\n");

      // Write branch_count_map.
      std::map<AddrPair, uint64_t> branch_count_map(binary.branch_count_map.begin(),
                                                    binary.branch_count_map.end());
      fprintf(output_fp_.get(), "%zu\n", branch_count_map.size());
      for (const auto& pair2 : branch_count_map) {
        const AddrPair& branch = pair2.first;
        uint64_t count = pair2.second;

        fprintf(output_fp_.get(), "%" PRIx64 "->%" PRIx64 ":%" PRIu64 "\n", to_offset(branch.first),
                to_offset(branch.second), count);
      }

      // Write the binary path in comment.
      fprintf(output_fp_.get(), "// %s\n\n", dso->Path().c_str());
    }
  }

  uint64_t GetFirstLoadSegmentVaddr(Dso* dso) {
    ElfStatus status;
    if (auto elf = ElfFile::Open(dso->GetDebugFilePath(), &status); elf) {
      for (const auto& segment : elf->GetProgramHeader()) {
        if (segment.is_load) {
          return segment.vaddr;
        }
      }
    }
    return 0;
  }

  bool GenerateBranchList() {
    // Don't produce empty output file.
    if (branch_list_binary_map_.empty()) {
      LOG(INFO) << "Skip empty output file.";
      output_fp_.reset(nullptr);
      unlink(output_filename_.c_str());
      return true;
    }

    proto::ETMBranchList branch_list_proto;
    branch_list_proto.set_magic(ETM_BRANCH_LIST_PROTO_MAGIC);
    std::vector<char> branch_buf;
    for (const auto& dso_p : branch_list_binary_map_) {
      Dso* dso = dso_p.first;
      auto& addr_map = dso_p.second;
      auto binary_proto = branch_list_proto.add_binaries();

      binary_proto->set_path(dso->Path());
      BuildId build_id = Dso::FindExpectedBuildIdForPath(dso->Path());
      if (!build_id.IsEmpty()) {
        binary_proto->set_build_id(build_id.ToString().substr(2));
      }
      auto opt_binary_type = ToProtoBinaryType(dso->type());
      if (!opt_binary_type.has_value()) {
        return false;
      }
      binary_proto->set_type(opt_binary_type.value());

      for (const auto& addr_p : addr_map) {
        auto addr_proto = binary_proto->add_addrs();
        addr_proto->set_addr(addr_p.first);

        for (const auto& branch_p : addr_p.second) {
          const std::vector<bool>& branch = branch_p.first;
          auto branch_proto = addr_proto->add_branches();

          branch_proto->set_branch(BranchToProtoString(branch));
          branch_proto->set_branch_size(branch.size());
          branch_proto->set_count(branch_p.second);
        }
      }

      if (dso->type() == DSO_KERNEL) {
        if (kernel_map_start_addr_ == 0) {
          LOG(WARNING) << "Can't convert kernel ip addresses without kernel start addr. So remove "
                          "branches for the kernel.";
          branch_list_proto.mutable_binaries()->RemoveLast();
          continue;
        }
        if (dso->GetDebugFilePath() == dso->Path()) {
          // vmlinux isn't available. We still use kernel ip addr. Put kernel start addr in proto
          // for address conversion later.
          binary_proto->mutable_kernel_info()->set_kernel_start_addr(kernel_map_start_addr_);
        } else {
          // vmlinux is available. We have converted kernel ip addr to vaddr in vmlinux. So no need
          // to put kernel start addr in proto.
          binary_proto->mutable_kernel_info()->set_kernel_start_addr(0);
        }
      }
    }
    if (!branch_list_proto.SerializeToFileDescriptor(fileno(output_fp_.get()))) {
      PLOG(ERROR) << "failed to write to output file";
      return false;
    }
    return true;
  }

  std::optional<proto::ETMBranchList_Binary::BinaryType> ToProtoBinaryType(DsoType dso_type) {
    switch (dso_type) {
      case DSO_ELF_FILE:
        return proto::ETMBranchList_Binary::ELF_FILE;
      case DSO_KERNEL:
        return proto::ETMBranchList_Binary::KERNEL;
      case DSO_KERNEL_MODULE:
        return proto::ETMBranchList_Binary::KERNEL_MODULE;
      default:
        LOG(ERROR) << "unexpected dso type " << dso_type;
        return std::nullopt;
    }
  }

  std::optional<DsoType> ToDsoType(proto::ETMBranchList_Binary::BinaryType binary_type) {
    switch (binary_type) {
      case proto::ETMBranchList_Binary::ELF_FILE:
        return DSO_ELF_FILE;
      case proto::ETMBranchList_Binary::KERNEL:
        return DSO_KERNEL;
      case proto::ETMBranchList_Binary::KERNEL_MODULE:
        return DSO_KERNEL_MODULE;
      default:
        LOG(ERROR) << "unexpected binary type " << binary_type;
        return std::nullopt;
    }
  }

  std::regex binary_name_regex_{""};  // Default to match everything.
  bool exclude_perf_ = false;
  std::string input_filename_ = "perf.data";
  std::string output_filename_ = "perf_inject.data";
  OutputFormat output_format_ = OutputFormat::AutoFDO;
  ThreadTreeWithFilter thread_tree_;
  std::unique_ptr<RecordFileReader> record_file_reader_;
  ETMDumpOption etm_dump_option_;
  std::unique_ptr<ETMDecoder> etm_decoder_;
  std::vector<uint8_t> aux_data_buffer_;
  std::unique_ptr<FILE, decltype(&fclose)> output_fp_;

  // Store results for AutoFDO.
  std::unordered_map<Dso*, AutoFDOBinaryInfo> autofdo_binary_map_;
  // Store results for BranchList.
  std::unordered_map<Dso*, BranchListBinaryInfo> branch_list_binary_map_;
  std::vector<std::unique_ptr<Dso>> branch_list_dso_v_;
  uint64_t kernel_map_start_addr_ = 0;
};

}  // namespace

void RegisterInjectCommand() {
  return RegisterCommand("inject", [] { return std::unique_ptr<Command>(new InjectCommand); });
}

}  // namespace simpleperf