aboutsummaryrefslogtreecommitdiff
path: root/analysis/R/decode_ngrams.R
blob: e2585cbde87f3fd133dea19769850dae8897d6fd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
# Copyright 2014 Google Inc. All rights reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

#
# This file has functions that aid in the estimation of a distribution when the
#     dictionary is unknown. There are functions for estimating pairwise joint
#     ngram distributions, pruning out false positives, and combining the two
#     steps.

FindPairwiseCandidates <- function(report_data, N, ngram_params, params) {
  # Finds the pairwise most likely ngrams.
  #
  # Args:
  #   report_data: Object containing data relevant to reports:
  #       $inds: The indices of reports collected using various pairs
  #       $cohorts: The cohort of each report
  #       $map: The map used for all the ngrams
  #       $reports: The reports used for each ngram and full string
  #   N: Number of reports collected
  #   ngram_params: Parameters related to ngram size
  #   params: Parameter list.
  #
  # Returns:
  #   List: list of matrices, list of pairwise distributions.

  inds <- report_data$inds
  cohorts <- report_data$cohorts
  num_ngrams_collected <- ngram_params$num_ngrams_collected
  map <- report_data$map
  reports <- report_data$reports

  # Cycle over all the unique pairs of ngrams being collected
  found_candidates <- list()

  # Generate the map list to be used for all ngrams
  maps <- lapply(1:num_ngrams_collected, function(x) map)
  num_candidate_ngrams <- length(inds)

  .ComputeDist <- function(i, inds, cohorts, reports, maps, params,
                           num_ngrams_collected) {
    library(glmnet)
    ind <- inds[[i]]
    cohort_subset <- lapply(1:num_ngrams_collected, function(x)
                            cohorts[ind])
    report_subset <- reports[[i]]
    new_dist <- ComputeDistributionEM(report_subset,
                                      cohort_subset,
                                      maps, ignore_other = FALSE,
                                      params = params, estimate_var = FALSE)
    new_dist
  }

  # Compute the pairwise distributions (could be parallelized)
  dists <- lapply(seq(num_candidate_ngrams), function(i)
                  .ComputeDist(i, inds, cohorts, reports, maps,
                               params, num_ngrams_collected))

  dists_null <- sapply(dists, function(x) is.null(x))
  if (any(dists_null)) {
    return (list(found_candidates = list(), dists = dists))
  }
  cat("Found the pairwise ngram distributions.\n")

  # Find the threshold for choosing "significant" ngram pairs
  f <- params$f; q <- params$q; p <- params$p
  q2 <- .5 * f * (p + q) + (1 - f) * q
  p2 <- .5 * f * (p + q) + (1 - f) * p
  std_dev_counts <- sqrt(p2 * (1 - p2) * N) / (q2 - p2)
  (threshold <- std_dev_counts / N)
  threshold <- 0.04

  # Filter joints to remove infrequently co-occurring ngrams.
  candidate_strs <- lapply(1:num_candidate_ngrams, function(i) {
    fit <- dists[[i]]$fit
    edges <- which(fit > threshold, arr.ind = TRUE, FALSE)

    # Recover the list of strings that seem significant
    found_candidates <- sapply(1:ncol(edges), function(x) {
      chunks <- sapply(edges[, x],
                       function(j) dimnames(fit)[[x]][j])
      chunks
    })
    # sapply returns either "character" vector (for n=1) or a matrix.  Convert
    # it to a matrix.  This can be seen as follows:
    #
    # > class(sapply(1:5, function(x) "a"))
    # [1] "character"
    # > class(sapply(1:5, function(x) c("a", "b")))
    # [1] "matrix"
    found_candidates <- rbind(found_candidates)

    # Remove the "others"
    others <- which(found_candidates == "Other")
    if (length(others) > 0) {
      other <- which(found_candidates == "Other", arr.ind = TRUE)[, 1]
      # drop = FALSE necessary to keep it a matrix
      found_candidates <- found_candidates[-other, , drop = FALSE]
    }

    found_candidates
  })
  if (any(lapply(found_candidates, function(x) length(x)) == 0)) {
    return (NULL)
  }

  list(candidate_strs = candidate_strs, dists = dists)
}

FindFeasibleStrings <- function(found_candidates, pairings, num_ngrams,
                                ngram_size) {
  # Uses the list of strings found by the pairwise comparisons to build
  #     a list of full feasible strings. This relies on the iterative,
  #     graph-based approach.
  #
  # Args:
  #   found_candidates: list of candidates found by each pairwise decoding
  #   pairings: Matrix of size 2x(num_ngrams choose 2) listing all the
  #       ngram position pairings.
  #   num_ngrams: The total number of ngrams per word.
  #   ngram_size: Number of characters per ngram
  #
  # Returns:
  #   List of full string candidates.

  # Which ngram pairs are adjacent, i.e. of the form (i,i+1)
  adjacent <- sapply(seq(num_ngrams - 1), function(x) {
    c(1 + (x - 1) * ngram_size, x * ngram_size + 1)
  })

  adjacent_pairs <- apply(adjacent, 2, function(x) {
    which(apply(pairings, 1, function(y) identical(y, x)))
  })

  # The first set of candidates are ngrams found in positions 1 and 2
  active_cands <- found_candidates[[adjacent_pairs[1]]]
  if (class(active_cands) == "list") {
    return (list())
  } else {
    active_cands <- as.data.frame(active_cands)
  }

  # Now check successive ngrams to find consistent combinations
  #     i.e. after ngrams 1-2, check 2-3, 3-4, 4-5, etc.
  for (i in 2:length(adjacent_pairs)) {
    if (nrow(active_cands) == 0) {
      return (list())
    }
    new_cands <- found_candidates[[adjacent_pairs[i]]]
    new_cands <- as.data.frame(new_cands)
    # Builds the set of possible candidates based only on ascending
    #     candidate pairs
    active_cands <- BuildCandidates(active_cands, new_cands)
  }

  if (nrow(active_cands) == 0) {
    return (list())
  }
  # Now refine these candidates using non-adjacent bigrams
  remaining <- (1:(num_ngrams * (num_ngrams - 1) / 2))[-c(1, adjacent_pairs)]
  # For each non-adjacent pair, make sure that all the candidates are
  #     consistent (in this phase, candidates can ONLY be eliminated)

  for (i in remaining) {
    new_cands <- found_candidates[[i]]
    new_cands <- as.data.frame(new_cands)
    # Prune out all candidates that do not agree with new_cands
    active_cands <- PruneCandidates(active_cands, pairings[i, ],
                                    ngram_size,
                                    new_cands = new_cands)
  }
  # Consolidate the string ngrams into a full string representation
  if (length(active_cands) > 0) {
    active_cands <- sort(apply(active_cands, 1,
                               function(x) paste0(x, collapse = "")))
  }
  unname(active_cands)
}

BuildCandidates <- function(active_cands, new_cands) {
  # Takes in a data frame where each row is a valid sequence of ngrams
  #     checks which of the new_cands ngram pairs are consistent with
  #     the original active_cands ngram sequence.
  #
  # Args:
  #   active_cands: data frame of ngram sequence candidates (1 candidate
  #       sequence per row)
  #   new_cands: An rx2 data frame with a new list of candidate ngram
  #       pairs that might fit in with the previous list of candidates
  #
  # Returns:
  #   Updated active_cands, with another column if valid extensions are
  #       found.

  # Get the trailing ngrams from the current candidates
  to_check <- as.vector(tail(t(active_cands), n = 1))
  # Check which of the elements in to_check are leading ngrams among the
  #     new candidates
  present <- sapply(to_check, function(x) any(x == new_cands))
  # Remove the strings that are not represented among the new candidates
  to_check <- to_check[present]
  # Now insert the new candidates where they belong
  active_cands <- active_cands[present, , drop = FALSE]
  active_cands <- cbind(active_cands, col = NA)
  num_cands <- nrow(active_cands)
  hit_list <- c()
  for (j in 1:num_cands) {
    inds <- which(new_cands[, 1] == to_check[j])
    if (length(inds) == 0) {
      hit_list <- c(hit_list, j)
      next
    }
    # If there are multiple candidates fitting with an ngram, include
    #     each /full/ string as a candidate
    extra <- length(inds) - 1
    if (extra > 0) {
      rep_inds <- c(j, (new_num_cands + 1):(new_num_cands + extra))
      to_paste <- active_cands[j, ]
      # Add the new candidates to the bottom
      for (p in 1:extra) {
        active_cands <- rbind(active_cands, to_paste)
      }
    } else {
      rep_inds <- c(j)
    }
    active_cands[rep_inds, ncol(active_cands)] <-
        as.vector(new_cands[inds, 2])
    new_num_cands <- nrow(active_cands)
  }
  # If there were some false candidates in the original set, remove them
  if (length(hit_list) > 0) {
    active_cands <- active_cands[-hit_list, , drop = FALSE]
  }
  active_cands
}

PruneCandidates <- function(active_cands, pairing, ngram_size, new_cands) {
  # Takes in a data frame where each row is a valid sequence of ngrams
  #     checks which of the new_cands ngram pairs are consistent with
  #     the original active_cands ngram sequence. This can ONLY remove
  #     candidates presented in active_cands.
  #
  # Args:
  #   active_cands: data frame of ngram sequence candidates (1 candidate
  #       sequence per row)
  #   pairing: A length-2 list storing which two ngrams are measured
  #   ngram_size: Number of characters per ngram
  #   new_cands: An rx2 data frame with a new list of candidate ngram
  #       pairs that might fit in with the previous list of candidates
  #
  # Returns:
  #   Updated active_cands, with a reduced number of rows.

  # Convert the pairing to an ngram index
  cols <- sapply(pairing, function(x) (x - 1) / ngram_size + 1)

  cands_to_check <- active_cands[, cols, drop = FALSE]
  # Find the candidates that are inconsistent with the new data
  hit_list <- sapply(1:nrow(cands_to_check), function(j) {
    to_kill <- FALSE
    if (nrow(new_cands) == 0) {
      return (TRUE)
    }
    if (!any(apply(new_cands, 1, function(x)
                   all(cands_to_check[j, , drop = FALSE] == x)))) {
      to_kill <- TRUE
    }
    to_kill
  })

  # Determine which rows are false positives
  hit_indices <- which(hit_list)
  # Remove the false positives
  if (length(hit_indices) > 0) {
    active_cands <- active_cands[-hit_indices, ]
  }
  active_cands
}

EstimateDictionary <- function(report_data, N, ngram_params, params) {
  # Takes in a list of report data and returns a list of string
  #     estimates of the dictionary.
  #
  # Args:
  #     report_data: Object containing data relevant to reports:
  #         $inds: The indices of reports collected using various pairs
  #         $cohorts: The cohort of each report
  #         $map: THe map used for all the ngrams
  #         $reports: The reports used for each ngram and full string
  #   N: the number of individuals sending reports
  #   ngram_params: Parameters related to ngram length, etc
  #   params: Parameter vector with RAPPOR noise levels, cohorts, etc
  #
  # Returns:
  #   List: list of found candidates, list of pairwise candidates

  pairwise_candidates <- FindPairwiseCandidates(report_data, N,
                                                ngram_params,
                                                params)$candidate_strs
  cat("Found the pairwise candidates. \n")
  if (is.null(pairwise_candidates)) {
    return (list())
  }
  found_candidates <- FindFeasibleStrings(pairwise_candidates,
                                          report_data$pairings,
                                          ngram_params$num_ngrams,
                                          ngram_params$ngram_size)
  cat("Found all the candidates. \n")
  list(found_candidates = found_candidates,
       pairwise_candidates = pairwise_candidates)
}

WriteKPartiteGraph <- function(conn, pairwise_candidates, pairings, num_ngrams,
                               ngram_size) {
  # Args:
  #  conn: R connection to write to.  Should be opened with mode w+.
  #  pairwise_candidates: list of matrices.  Each matrix represents a subgraph;
  #    it contains the edges between partitions i and j, so there are (k choose
  #    2) matrices.  Each matrix has dimension 2 x E, where E is the number of
  #    edges.
  #  pairings: 2 x (k choose 2) matrix of character positions.  Each row
  #    corresponds to a subgraph; it has 1-based character index of partitions
  #    i and j.
  #  num_ngrams: length of pairwise_candidates, or the number of partitions in
  #    the k-partite graph

  # File Format:
  #
  # num_partitions 3
  # ngram_size 2
  # 0.ab 1.cd
  # 0.ab 2.ef
  #
  # The first line specifies the number of partitions (k).
  # The remaining lines are edges, where each node is <partition>.<bigram>.
  #
  # Partitions are numbered from 0.  The partition of the left node will be
  # less than the partition of the right node.

  # First two lines are metadata
  cat(sprintf('num_partitions %d\n', num_ngrams), file = conn)
  cat(sprintf('ngram_size %d\n', ngram_size), file = conn)

  for (i in 1:length(pairwise_candidates)) {
    # The two pairwise_candidates for this subgraph.
    # Turn 1-based character positions into 0-based partition numbers,
    # e.g. (3, 5) -> (1, 2)

    pos1 <- pairings[[i, 1]]
    pos2 <- pairings[[i, 2]]
    part1 <- (pos1 - 1) / ngram_size
    part2 <- (pos2 - 1) / ngram_size
    cat(sprintf("Writing partition (%d, %d)\n", part1, part2))

    p <- pairwise_candidates[[i]]
    # each row is an edge
    for (j in 1:nrow(p)) {
      n1 <- p[[j, 1]]
      n2 <- p[[j, 2]]
      line <- sprintf('edge %d.%s %d.%s\n', part1, n1, part2, n2)
      # NOTE: It would be faster to preallocate 'lines', but we would have to
      # make a two passes through pairwise_candidates.
      cat(line, file = conn)
    }
  }
}