aboutsummaryrefslogtreecommitdiff
path: root/src/f32/sse2/vec3a.rs
diff options
context:
space:
mode:
Diffstat (limited to 'src/f32/sse2/vec3a.rs')
-rw-r--r--src/f32/sse2/vec3a.rs246
1 files changed, 58 insertions, 188 deletions
diff --git a/src/f32/sse2/vec3a.rs b/src/f32/sse2/vec3a.rs
index 96c62a7..c13d9bf 100644
--- a/src/f32/sse2/vec3a.rs
+++ b/src/f32/sse2/vec3a.rs
@@ -1,6 +1,6 @@
// Generated from vec.rs.tera template. Edit the template, not the generated file.
-use crate::{f32::math, sse2::*, BVec3A, Vec2, Vec3, Vec4};
+use crate::{sse2::*, BVec3A, Vec2, Vec3, Vec4};
#[cfg(not(target_arch = "spirv"))]
use core::fmt;
@@ -12,7 +12,10 @@ use core::arch::x86::*;
#[cfg(target_arch = "x86_64")]
use core::arch::x86_64::*;
-#[repr(C)]
+#[cfg(feature = "libm")]
+#[allow(unused_imports)]
+use num_traits::Float;
+
union UnionCast {
a: [f32; 4],
v: Vec3A,
@@ -20,20 +23,16 @@ union UnionCast {
/// Creates a 3-dimensional vector.
#[inline(always)]
-#[must_use]
pub const fn vec3a(x: f32, y: f32, z: f32) -> Vec3A {
Vec3A::new(x, y, z)
}
-/// A 3-dimensional vector.
-///
-/// SIMD vector types are used for storage on supported platforms for better
-/// performance than the [`Vec3`] type.
+/// A 3-dimensional vector with SIMD support.
///
-/// It is possible to convert between [`Vec3`] and [`Vec3A`] types using [`From`]
-/// or [`Into`] trait implementations.
+/// This type is 16 byte aligned. A SIMD vector type is used for storage on supported platforms for
+/// better performance than the `Vec3` type.
///
-/// This type is 16 byte aligned.
+/// It is possible to convert between `Vec3` and `Vec3A` types using `From` trait implementations.
#[derive(Clone, Copy)]
#[repr(transparent)]
pub struct Vec3A(pub(crate) __m128);
@@ -48,37 +47,25 @@ impl Vec3A {
/// All negative ones.
pub const NEG_ONE: Self = Self::splat(-1.0);
- /// All `f32::MIN`.
- pub const MIN: Self = Self::splat(f32::MIN);
-
- /// All `f32::MAX`.
- pub const MAX: Self = Self::splat(f32::MAX);
-
- /// All `f32::NAN`.
+ /// All NAN.
pub const NAN: Self = Self::splat(f32::NAN);
- /// All `f32::INFINITY`.
- pub const INFINITY: Self = Self::splat(f32::INFINITY);
-
- /// All `f32::NEG_INFINITY`.
- pub const NEG_INFINITY: Self = Self::splat(f32::NEG_INFINITY);
-
- /// A unit vector pointing along the positive X axis.
+ /// A unit-length vector pointing along the positive X axis.
pub const X: Self = Self::new(1.0, 0.0, 0.0);
- /// A unit vector pointing along the positive Y axis.
+ /// A unit-length vector pointing along the positive Y axis.
pub const Y: Self = Self::new(0.0, 1.0, 0.0);
- /// A unit vector pointing along the positive Z axis.
+ /// A unit-length vector pointing along the positive Z axis.
pub const Z: Self = Self::new(0.0, 0.0, 1.0);
- /// A unit vector pointing along the negative X axis.
+ /// A unit-length vector pointing along the negative X axis.
pub const NEG_X: Self = Self::new(-1.0, 0.0, 0.0);
- /// A unit vector pointing along the negative Y axis.
+ /// A unit-length vector pointing along the negative Y axis.
pub const NEG_Y: Self = Self::new(0.0, -1.0, 0.0);
- /// A unit vector pointing along the negative Z axis.
+ /// A unit-length vector pointing along the negative Z axis.
pub const NEG_Z: Self = Self::new(0.0, 0.0, -1.0);
/// The unit axes.
@@ -86,14 +73,12 @@ impl Vec3A {
/// Creates a new vector.
#[inline(always)]
- #[must_use]
pub const fn new(x: f32, y: f32, z: f32) -> Self {
unsafe { UnionCast { a: [x, y, z, z] }.v }
}
/// Creates a vector with all elements set to `v`.
#[inline]
- #[must_use]
pub const fn splat(v: f32) -> Self {
unsafe { UnionCast { a: [v; 4] }.v }
}
@@ -104,7 +89,6 @@ impl Vec3A {
/// A true element in the mask uses the corresponding element from `if_true`, and false
/// uses the element from `if_false`.
#[inline]
- #[must_use]
pub fn select(mask: BVec3A, if_true: Self, if_false: Self) -> Self {
Self(unsafe {
_mm_or_ps(
@@ -116,14 +100,12 @@ impl Vec3A {
/// Creates a new vector from an array.
#[inline]
- #[must_use]
pub const fn from_array(a: [f32; 3]) -> Self {
Self::new(a[0], a[1], a[2])
}
/// `[x, y, z]`
#[inline]
- #[must_use]
pub const fn to_array(&self) -> [f32; 3] {
unsafe { *(self as *const Vec3A as *const [f32; 3]) }
}
@@ -134,7 +116,6 @@ impl Vec3A {
///
/// Panics if `slice` is less than 3 elements long.
#[inline]
- #[must_use]
pub const fn from_slice(slice: &[f32]) -> Self {
Self::new(slice[0], slice[1], slice[2])
}
@@ -154,23 +135,20 @@ impl Vec3A {
/// Internal method for creating a 3D vector from a 4D vector, discarding `w`.
#[allow(dead_code)]
#[inline]
- #[must_use]
pub(crate) fn from_vec4(v: Vec4) -> Self {
Self(v.0)
}
/// Creates a 4D vector from `self` and the given `w` value.
#[inline]
- #[must_use]
pub fn extend(self, w: f32) -> Vec4 {
Vec4::new(self.x, self.y, self.z, w)
}
/// Creates a 2D vector from the `x` and `y` elements of `self`, discarding `z`.
///
- /// Truncation may also be performed by using [`self.xy()`][crate::swizzles::Vec3Swizzles::xy()].
+ /// Truncation may also be performed by using `self.xy()` or `Vec2::from()`.
#[inline]
- #[must_use]
pub fn truncate(self) -> Vec2 {
use crate::swizzles::Vec3Swizzles;
self.xy()
@@ -178,21 +156,18 @@ impl Vec3A {
/// Computes the dot product of `self` and `rhs`.
#[inline]
- #[must_use]
pub fn dot(self, rhs: Self) -> f32 {
unsafe { dot3(self.0, rhs.0) }
}
/// Returns a vector where every component is the dot product of `self` and `rhs`.
#[inline]
- #[must_use]
pub fn dot_into_vec(self, rhs: Self) -> Self {
Self(unsafe { dot3_into_m128(self.0, rhs.0) })
}
/// Computes the cross product of `self` and `rhs`.
#[inline]
- #[must_use]
pub fn cross(self, rhs: Self) -> Self {
unsafe {
// x <- a.y*b.z - a.z*b.y
@@ -213,7 +188,6 @@ impl Vec3A {
///
/// In other words this computes `[self.x.min(rhs.x), self.y.min(rhs.y), ..]`.
#[inline]
- #[must_use]
pub fn min(self, rhs: Self) -> Self {
Self(unsafe { _mm_min_ps(self.0, rhs.0) })
}
@@ -222,7 +196,6 @@ impl Vec3A {
///
/// In other words this computes `[self.x.max(rhs.x), self.y.max(rhs.y), ..]`.
#[inline]
- #[must_use]
pub fn max(self, rhs: Self) -> Self {
Self(unsafe { _mm_max_ps(self.0, rhs.0) })
}
@@ -235,7 +208,6 @@ impl Vec3A {
///
/// Will panic if `min` is greater than `max` when `glam_assert` is enabled.
#[inline]
- #[must_use]
pub fn clamp(self, min: Self, max: Self) -> Self {
glam_assert!(min.cmple(max).all(), "clamp: expected min <= max");
self.max(min).min(max)
@@ -245,7 +217,6 @@ impl Vec3A {
///
/// In other words this computes `min(x, y, ..)`.
#[inline]
- #[must_use]
pub fn min_element(self) -> f32 {
unsafe {
let v = self.0;
@@ -259,7 +230,6 @@ impl Vec3A {
///
/// In other words this computes `max(x, y, ..)`.
#[inline]
- #[must_use]
pub fn max_element(self) -> f32 {
unsafe {
let v = self.0;
@@ -275,7 +245,6 @@ impl Vec3A {
/// In other words, this computes `[self.x == rhs.x, self.y == rhs.y, ..]` for all
/// elements.
#[inline]
- #[must_use]
pub fn cmpeq(self, rhs: Self) -> BVec3A {
BVec3A(unsafe { _mm_cmpeq_ps(self.0, rhs.0) })
}
@@ -286,7 +255,6 @@ impl Vec3A {
/// In other words this computes `[self.x != rhs.x, self.y != rhs.y, ..]` for all
/// elements.
#[inline]
- #[must_use]
pub fn cmpne(self, rhs: Self) -> BVec3A {
BVec3A(unsafe { _mm_cmpneq_ps(self.0, rhs.0) })
}
@@ -297,7 +265,6 @@ impl Vec3A {
/// In other words this computes `[self.x >= rhs.x, self.y >= rhs.y, ..]` for all
/// elements.
#[inline]
- #[must_use]
pub fn cmpge(self, rhs: Self) -> BVec3A {
BVec3A(unsafe { _mm_cmpge_ps(self.0, rhs.0) })
}
@@ -308,7 +275,6 @@ impl Vec3A {
/// In other words this computes `[self.x > rhs.x, self.y > rhs.y, ..]` for all
/// elements.
#[inline]
- #[must_use]
pub fn cmpgt(self, rhs: Self) -> BVec3A {
BVec3A(unsafe { _mm_cmpgt_ps(self.0, rhs.0) })
}
@@ -319,7 +285,6 @@ impl Vec3A {
/// In other words this computes `[self.x <= rhs.x, self.y <= rhs.y, ..]` for all
/// elements.
#[inline]
- #[must_use]
pub fn cmple(self, rhs: Self) -> BVec3A {
BVec3A(unsafe { _mm_cmple_ps(self.0, rhs.0) })
}
@@ -330,14 +295,12 @@ impl Vec3A {
/// In other words this computes `[self.x < rhs.x, self.y < rhs.y, ..]` for all
/// elements.
#[inline]
- #[must_use]
pub fn cmplt(self, rhs: Self) -> BVec3A {
BVec3A(unsafe { _mm_cmplt_ps(self.0, rhs.0) })
}
/// Returns a vector containing the absolute value of each element of `self`.
#[inline]
- #[must_use]
pub fn abs(self) -> Self {
Self(unsafe { crate::sse2::m128_abs(self.0) })
}
@@ -348,7 +311,6 @@ impl Vec3A {
/// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
/// - `NAN` if the number is `NAN`
#[inline]
- #[must_use]
pub fn signum(self) -> Self {
unsafe {
let result = Self(_mm_or_ps(_mm_and_ps(self.0, Self::NEG_ONE.0), Self::ONE.0));
@@ -359,7 +321,6 @@ impl Vec3A {
/// Returns a vector with signs of `rhs` and the magnitudes of `self`.
#[inline]
- #[must_use]
pub fn copysign(self, rhs: Self) -> Self {
unsafe {
let mask = Self::splat(-0.0);
@@ -375,7 +336,6 @@ impl Vec3A {
/// A negative element results in a `1` bit and a positive element in a `0` bit. Element `x` goes
/// into the first lowest bit, element `y` into the second, etc.
#[inline]
- #[must_use]
pub fn is_negative_bitmask(self) -> u32 {
unsafe { (_mm_movemask_ps(self.0) as u32) & 0x7 }
}
@@ -383,14 +343,12 @@ impl Vec3A {
/// Returns `true` if, and only if, all elements are finite. If any element is either
/// `NaN`, positive or negative infinity, this will return `false`.
#[inline]
- #[must_use]
pub fn is_finite(self) -> bool {
self.x.is_finite() && self.y.is_finite() && self.z.is_finite()
}
/// Returns `true` if any elements are `NaN`.
#[inline]
- #[must_use]
pub fn is_nan(self) -> bool {
self.is_nan_mask().any()
}
@@ -399,7 +357,6 @@ impl Vec3A {
///
/// In other words, this computes `[x.is_nan(), y.is_nan(), z.is_nan(), w.is_nan()]`.
#[inline]
- #[must_use]
pub fn is_nan_mask(self) -> BVec3A {
BVec3A(unsafe { _mm_cmpunord_ps(self.0, self.0) })
}
@@ -407,7 +364,6 @@ impl Vec3A {
/// Computes the length of `self`.
#[doc(alias = "magnitude")]
#[inline]
- #[must_use]
pub fn length(self) -> f32 {
unsafe {
let dot = dot3_in_x(self.0, self.0);
@@ -420,7 +376,6 @@ impl Vec3A {
/// This is faster than `length()` as it avoids a square root operation.
#[doc(alias = "magnitude2")]
#[inline]
- #[must_use]
pub fn length_squared(self) -> f32 {
self.dot(self)
}
@@ -429,7 +384,6 @@ impl Vec3A {
///
/// For valid results, `self` must _not_ be of length zero.
#[inline]
- #[must_use]
pub fn length_recip(self) -> f32 {
unsafe {
let dot = dot3_in_x(self.0, self.0);
@@ -439,53 +393,27 @@ impl Vec3A {
/// Computes the Euclidean distance between two points in space.
#[inline]
- #[must_use]
pub fn distance(self, rhs: Self) -> f32 {
(self - rhs).length()
}
/// Compute the squared euclidean distance between two points in space.
#[inline]
- #[must_use]
pub fn distance_squared(self, rhs: Self) -> f32 {
(self - rhs).length_squared()
}
- /// Returns the element-wise quotient of [Euclidean division] of `self` by `rhs`.
- #[inline]
- #[must_use]
- pub fn div_euclid(self, rhs: Self) -> Self {
- Self::new(
- math::div_euclid(self.x, rhs.x),
- math::div_euclid(self.y, rhs.y),
- math::div_euclid(self.z, rhs.z),
- )
- }
-
- /// Returns the element-wise remainder of [Euclidean division] of `self` by `rhs`.
- ///
- /// [Euclidean division]: f32::rem_euclid
- #[inline]
- #[must_use]
- pub fn rem_euclid(self, rhs: Self) -> Self {
- Self::new(
- math::rem_euclid(self.x, rhs.x),
- math::rem_euclid(self.y, rhs.y),
- math::rem_euclid(self.z, rhs.z),
- )
- }
-
/// Returns `self` normalized to length 1.0.
///
/// For valid results, `self` must _not_ be of length zero, nor very close to zero.
///
- /// See also [`Self::try_normalize()`] and [`Self::normalize_or_zero()`].
+ /// See also [`Self::try_normalize`] and [`Self::normalize_or_zero`].
///
/// Panics
///
/// Will panic if `self` is zero length when `glam_assert` is enabled.
- #[inline]
#[must_use]
+ #[inline]
pub fn normalize(self) -> Self {
unsafe {
let length = _mm_sqrt_ps(dot3_into_m128(self.0, self.0));
@@ -501,9 +429,9 @@ impl Vec3A {
/// In particular, if the input is zero (or very close to zero), or non-finite,
/// the result of this operation will be `None`.
///
- /// See also [`Self::normalize_or_zero()`].
- #[inline]
+ /// See also [`Self::normalize_or_zero`].
#[must_use]
+ #[inline]
pub fn try_normalize(self) -> Option<Self> {
let rcp = self.length_recip();
if rcp.is_finite() && rcp > 0.0 {
@@ -518,9 +446,9 @@ impl Vec3A {
/// In particular, if the input is zero (or very close to zero), or non-finite,
/// the result of this operation will be zero.
///
- /// See also [`Self::try_normalize()`].
- #[inline]
+ /// See also [`Self::try_normalize`].
#[must_use]
+ #[inline]
pub fn normalize_or_zero(self) -> Self {
let rcp = self.length_recip();
if rcp.is_finite() && rcp > 0.0 {
@@ -534,10 +462,9 @@ impl Vec3A {
///
/// Uses a precision threshold of `1e-6`.
#[inline]
- #[must_use]
pub fn is_normalized(self) -> bool {
// TODO: do something with epsilon
- math::abs(self.length_squared() - 1.0) <= 1e-4
+ (self.length_squared() - 1.0).abs() <= 1e-4
}
/// Returns the vector projection of `self` onto `rhs`.
@@ -547,8 +474,8 @@ impl Vec3A {
/// # Panics
///
/// Will panic if `rhs` is zero length when `glam_assert` is enabled.
- #[inline]
#[must_use]
+ #[inline]
pub fn project_onto(self, rhs: Self) -> Self {
let other_len_sq_rcp = rhs.dot(rhs).recip();
glam_assert!(other_len_sq_rcp.is_finite());
@@ -565,8 +492,8 @@ impl Vec3A {
/// # Panics
///
/// Will panic if `rhs` has a length of zero when `glam_assert` is enabled.
- #[inline]
#[must_use]
+ #[inline]
pub fn reject_from(self, rhs: Self) -> Self {
self - self.project_onto(rhs)
}
@@ -578,8 +505,8 @@ impl Vec3A {
/// # Panics
///
/// Will panic if `rhs` is not normalized when `glam_assert` is enabled.
- #[inline]
#[must_use]
+ #[inline]
pub fn project_onto_normalized(self, rhs: Self) -> Self {
glam_assert!(rhs.is_normalized());
rhs * self.dot(rhs)
@@ -595,8 +522,8 @@ impl Vec3A {
/// # Panics
///
/// Will panic if `rhs` is not normalized when `glam_assert` is enabled.
- #[inline]
#[must_use]
+ #[inline]
pub fn reject_from_normalized(self, rhs: Self) -> Self {
self - self.project_onto_normalized(rhs)
}
@@ -604,7 +531,6 @@ impl Vec3A {
/// Returns a vector containing the nearest integer to a number for each element of `self`.
/// Round half-way cases away from 0.0.
#[inline]
- #[must_use]
pub fn round(self) -> Self {
Self(unsafe { m128_round(self.0) })
}
@@ -612,7 +538,6 @@ impl Vec3A {
/// Returns a vector containing the largest integer less than or equal to a number for each
/// element of `self`.
#[inline]
- #[must_use]
pub fn floor(self) -> Self {
Self(unsafe { m128_floor(self.0) })
}
@@ -620,25 +545,15 @@ impl Vec3A {
/// Returns a vector containing the smallest integer greater than or equal to a number for
/// each element of `self`.
#[inline]
- #[must_use]
pub fn ceil(self) -> Self {
Self(unsafe { m128_ceil(self.0) })
}
- /// Returns a vector containing the integer part each element of `self`. This means numbers are
- /// always truncated towards zero.
- #[inline]
- #[must_use]
- pub fn trunc(self) -> Self {
- Self(unsafe { m128_trunc(self.0) })
- }
-
/// Returns a vector containing the fractional part of the vector, e.g. `self -
/// self.floor()`.
///
/// Note that this is fast but not precise for large numbers.
#[inline]
- #[must_use]
pub fn fract(self) -> Self {
self - self.floor()
}
@@ -646,25 +561,18 @@ impl Vec3A {
/// Returns a vector containing `e^self` (the exponential function) for each element of
/// `self`.
#[inline]
- #[must_use]
pub fn exp(self) -> Self {
- Self::new(math::exp(self.x), math::exp(self.y), math::exp(self.z))
+ Self::new(self.x.exp(), self.y.exp(), self.z.exp())
}
/// Returns a vector containing each element of `self` raised to the power of `n`.
#[inline]
- #[must_use]
pub fn powf(self, n: f32) -> Self {
- Self::new(
- math::powf(self.x, n),
- math::powf(self.y, n),
- math::powf(self.z, n),
- )
+ Self::new(self.x.powf(n), self.y.powf(n), self.z.powf(n))
}
/// Returns a vector containing the reciprocal `1.0/n` of each element of `self`.
#[inline]
- #[must_use]
pub fn recip(self) -> Self {
Self(unsafe { _mm_div_ps(Self::ONE.0, self.0) })
}
@@ -676,7 +584,6 @@ impl Vec3A {
/// extrapolated.
#[doc(alias = "mix")]
#[inline]
- #[must_use]
pub fn lerp(self, rhs: Self, s: f32) -> Self {
self + ((rhs - self) * s)
}
@@ -691,7 +598,6 @@ impl Vec3A {
/// For more see
/// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).
#[inline]
- #[must_use]
pub fn abs_diff_eq(self, rhs: Self, max_abs_diff: f32) -> bool {
self.sub(rhs).abs().cmple(Self::splat(max_abs_diff)).all()
}
@@ -702,38 +608,33 @@ impl Vec3A {
///
/// Will panic if `min` is greater than `max` when `glam_assert` is enabled.
#[inline]
- #[must_use]
pub fn clamp_length(self, min: f32, max: f32) -> Self {
glam_assert!(min <= max);
let length_sq = self.length_squared();
if length_sq < min * min {
- min * (self / math::sqrt(length_sq))
+ self * (length_sq.sqrt().recip() * min)
} else if length_sq > max * max {
- max * (self / math::sqrt(length_sq))
+ self * (length_sq.sqrt().recip() * max)
} else {
self
}
}
/// Returns a vector with a length no more than `max`
- #[inline]
- #[must_use]
pub fn clamp_length_max(self, max: f32) -> Self {
let length_sq = self.length_squared();
if length_sq > max * max {
- max * (self / math::sqrt(length_sq))
+ self * (length_sq.sqrt().recip() * max)
} else {
self
}
}
/// Returns a vector with a length no less than `min`
- #[inline]
- #[must_use]
pub fn clamp_length_min(self, min: f32) -> Self {
let length_sq = self.length_squared();
if length_sq < min * min {
- min * (self / math::sqrt(length_sq))
+ self * (length_sq.sqrt().recip() * min)
} else {
self
}
@@ -747,7 +648,6 @@ impl Vec3A {
/// and will be heavily dependant on designing algorithms with specific target hardware in
/// mind.
#[inline]
- #[must_use]
pub fn mul_add(self, a: Self, b: Self) -> Self {
#[cfg(target_feature = "fma")]
unsafe {
@@ -755,71 +655,72 @@ impl Vec3A {
}
#[cfg(not(target_feature = "fma"))]
Self::new(
- math::mul_add(self.x, a.x, b.x),
- math::mul_add(self.y, a.y, b.y),
- math::mul_add(self.z, a.z, b.z),
+ self.x.mul_add(a.x, b.x),
+ self.y.mul_add(a.y, b.y),
+ self.z.mul_add(a.z, b.z),
)
}
/// Returns the angle (in radians) between two vectors.
///
- /// The inputs do not need to be unit vectors however they must be non-zero.
+ /// The input vectors do not need to be unit length however they must be non-zero.
#[inline]
- #[must_use]
pub fn angle_between(self, rhs: Self) -> f32 {
- math::acos_approx(
- self.dot(rhs)
- .div(math::sqrt(self.length_squared().mul(rhs.length_squared()))),
- )
+ use crate::FloatEx;
+ self.dot(rhs)
+ .div(self.length_squared().mul(rhs.length_squared()).sqrt())
+ .acos_approx()
}
/// Returns some vector that is orthogonal to the given one.
///
/// The input vector must be finite and non-zero.
///
- /// The output vector is not necessarily unit length. For that use
- /// [`Self::any_orthonormal_vector()`] instead.
+ /// The output vector is not necessarily unit-length.
+ /// For that use [`Self::any_orthonormal_vector`] instead.
#[inline]
- #[must_use]
pub fn any_orthogonal_vector(&self) -> Self {
// This can probably be optimized
- if math::abs(self.x) > math::abs(self.y) {
+ if self.x.abs() > self.y.abs() {
Self::new(-self.z, 0.0, self.x) // self.cross(Self::Y)
} else {
Self::new(0.0, self.z, -self.y) // self.cross(Self::X)
}
}
- /// Returns any unit vector that is orthogonal to the given one.
- ///
- /// The input vector must be unit length.
+ /// Returns any unit-length vector that is orthogonal to the given one.
+ /// The input vector must be finite and non-zero.
///
/// # Panics
///
/// Will panic if `self` is not normalized when `glam_assert` is enabled.
#[inline]
- #[must_use]
pub fn any_orthonormal_vector(&self) -> Self {
glam_assert!(self.is_normalized());
// From https://graphics.pixar.com/library/OrthonormalB/paper.pdf
- let sign = math::signum(self.z);
+ #[cfg(feature = "std")]
+ let sign = (1.0_f32).copysign(self.z);
+ #[cfg(not(feature = "std"))]
+ let sign = self.z.signum();
let a = -1.0 / (sign + self.z);
let b = self.x * self.y * a;
Self::new(b, sign + self.y * self.y * a, -self.y)
}
- /// Given a unit vector return two other vectors that together form an orthonormal
- /// basis. That is, all three vectors are orthogonal to each other and are normalized.
+ /// Given a unit-length vector return two other vectors that together form an orthonormal
+ /// basis. That is, all three vectors are orthogonal to each other and are normalized.
///
/// # Panics
///
/// Will panic if `self` is not normalized when `glam_assert` is enabled.
#[inline]
- #[must_use]
pub fn any_orthonormal_pair(&self) -> (Self, Self) {
glam_assert!(self.is_normalized());
// From https://graphics.pixar.com/library/OrthonormalB/paper.pdf
- let sign = math::signum(self.z);
+ #[cfg(feature = "std")]
+ let sign = (1.0_f32).copysign(self.z);
+ #[cfg(not(feature = "std"))]
+ let sign = self.z.signum();
let a = -1.0 / (sign + self.z);
let b = self.x * self.y * a;
(
@@ -830,52 +731,21 @@ impl Vec3A {
/// Casts all elements of `self` to `f64`.
#[inline]
- #[must_use]
pub fn as_dvec3(&self) -> crate::DVec3 {
crate::DVec3::new(self.x as f64, self.y as f64, self.z as f64)
}
- /// Casts all elements of `self` to `i16`.
- #[inline]
- #[must_use]
- pub fn as_i16vec3(&self) -> crate::I16Vec3 {
- crate::I16Vec3::new(self.x as i16, self.y as i16, self.z as i16)
- }
-
- /// Casts all elements of `self` to `u16`.
- #[inline]
- #[must_use]
- pub fn as_u16vec3(&self) -> crate::U16Vec3 {
- crate::U16Vec3::new(self.x as u16, self.y as u16, self.z as u16)
- }
-
/// Casts all elements of `self` to `i32`.
#[inline]
- #[must_use]
pub fn as_ivec3(&self) -> crate::IVec3 {
crate::IVec3::new(self.x as i32, self.y as i32, self.z as i32)
}
/// Casts all elements of `self` to `u32`.
#[inline]
- #[must_use]
pub fn as_uvec3(&self) -> crate::UVec3 {
crate::UVec3::new(self.x as u32, self.y as u32, self.z as u32)
}
-
- /// Casts all elements of `self` to `i64`.
- #[inline]
- #[must_use]
- pub fn as_i64vec3(&self) -> crate::I64Vec3 {
- crate::I64Vec3::new(self.x as i64, self.y as i64, self.z as i64)
- }
-
- /// Casts all elements of `self` to `u64`.
- #[inline]
- #[must_use]
- pub fn as_u64vec3(&self) -> crate::U64Vec3 {
- crate::U64Vec3::new(self.x as u64, self.y as u64, self.z as u64)
- }
}
impl Default for Vec3A {
@@ -1254,7 +1124,7 @@ impl From<Vec3> for Vec3A {
}
impl From<Vec4> for Vec3A {
- /// Creates a [`Vec3A`] from the `x`, `y` and `z` elements of `self` discarding `w`.
+ /// Creates a `Vec3A` from the `x`, `y` and `z` elements of `self` discarding `w`.
///
/// On architectures where SIMD is supported such as SSE2 on `x86_64` this conversion is a noop.
#[inline]