summaryrefslogtreecommitdiff
path: root/library/ADK2/utility/compiler.h
blob: a4fb157733e52f1648dc9b08dd37a9eddbbd3564 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
/* This header file is part of the AVR Software Framework 2.0.0 release */

/*This file is prepared for Doxygen automatic documentation generation.*/
/*! \file *********************************************************************
 *
 * \brief Compiler file for AVR32.
 *
 * This file defines commonly used types and macros.
 *
 * - Compiler:           IAR EWAVR32 and GNU GCC for AVR32
 * - Supported devices:  All AVR32 devices can be used.
 * - AppNote:
 *
 * \author               Atmel Corporation: http://www.atmel.com \n
 *                       Support and FAQ: http://support.atmel.no/
 *
 ******************************************************************************/

/* Copyright (c) 2009 Atmel Corporation. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * 3. The name of Atmel may not be used to endorse or promote products derived
 * from this software without specific prior written permission.
 *
 * 4. This software may only be redistributed and used in connection with an Atmel
 * AVR product.
 *
 * THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
 * EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
 *
 */

#ifndef _COMPILER_H_
#define _COMPILER_H_


/*_____ D E C L A R A T I O N S ____________________________________________*/


#include <stddef.h>
#include <stdlib.h>
#include <stdbool.h>
#include <stdint.h>
#include <Arduino.h>



#define LITTLE_ENDIAN_MCU 1==1
/*#undef __ICCAVR32__*/

#define max(a,b) ((a) > (b) ? (a) : (b))

extern uint32_t q_get_PRIMASK(void);
extern void q_set_PRIMASK(uint32_t priMask);

/* Enable interrupts */
#define Enable_global_interrupt() __set_PRIMASK(0)
#define sei()    __set_PRIMASK(0)
/* Disable interrupts */
#define Disable_global_interrupt() __set_PRIMASK(1)
#define cli()    __set_PRIMASK(1)
/* Disable IRQ interrupt and save status */
#define sai()    __get_PRIMASK()
/* Restore interrupt status */
#define rei(X)   __set_PRIMASK(X)

#define Is_global_interrupt_enabled()  ((__get_PRIMASK()) ? 1 : 0)

///*
// * @brief  Return the Priority Mask value
// *
// * @param  none
// * @return uint32_t PriMask
// *
// * Return the state of the priority mask bit from the priority mask
// * register
// */
//#if defined(__GNUC__)
//uint32_t q_get_PRIMASK(void)
//{
//    uint32_t result=0;
//
//    asm volatile ("MRS %0, primask" : "=r" (result) );
//    return(result);
//}
//#elif defined(__ICCARM__)
//uint32_t q_get_PRIMASK(void)
//{
//    __asm("mrs r0, primask");
//    __asm("bx lr");
//}
//#elif defined(__CC_ARM)
///*__asm*/ uint32_t __get_PRIMASK(void)
//{
//  uint32_t primask=0;
//
////   mrs r0, primask
//  return(primask);
//}
//#endif
//
///*
// * @brief  Set the Priority Mask value
// *
// * @param  uint32_t PriMask
// * @return none
// *
// * Set the priority mask bit in the priority mask register
// */
//#if defined(__GNUC__)
//void q_set_PRIMASK(uint32_t priMask)
//{
//    asm volatile ("MSR primask, %0" : : "r" (priMask) );
//}
//#elif defined(__ICCARM__)
//void q_set_PRIMASK(uint32_t priMask)
//{
//    __asm("msr primask, r0");
//    __asm("bx lr");
//}
//#elif defined(__CC_ARM)
//__asm void __set_PRIMASK(uint32_t priMask)
//{
////   msr primask, r0
////   bx lr
//}
//#endif



#if (defined __ICCAVR32__)

/*! \name Compiler Keywords
 *
 * Port of some keywords from GNU GCC for AVR32 to IAR Embedded Workbench for Atmel AVR32.
 */
//! @{
#define __asm__             asm
#define __inline__          inline
#define __volatile__
//! @}

#endif

/**
 * \def barrier
 * \brief Memory barrier
 */
#if defined(__GNUC__)
#  define barrier()        asm volatile("" ::: "memory")
#elif defined(__ICCAVR32__)
#  define barrier()        asm ("")
#endif

/**
 * \brief Emit the compiler pragma \a arg.
 *
 * \param arg The pragma directive as it would appear after \e \#pragma
 * (i.e. not stringified).
 */
#define COMPILER_PRAGMA(arg)            _Pragma(#arg)

/**
 * \def COMPILER_PACK_SET(alignment)
 * \brief Set maximum alignment for subsequent struct and union
 * definitions to \a alignment.
 */
#define COMPILER_PACK_SET(alignment)   COMPILER_PRAGMA(pack(alignment))

/**
 * \def COMPILER_PACK_RESET()
 * \brief Set default alignment for subsequent struct and union
 * definitions.
 */
#define COMPILER_PACK_RESET()          COMPILER_PRAGMA(pack())


/**
 * \brief Set word-aligned boundary.
 */
#if (defined __GNUC__)
#define COMPILER_WORD_ALIGNED    __attribute__((__aligned__(4)))
#elif (defined __ICCAVR32__)
#define COMPILER_WORD_ALIGNED    COMPILER_PRAGMA(data_alignment = 4)
#endif

/**
 * \name System Register Access
 * @{
 */
#if defined(__GNUC__) || defined(__DOXYGEN__)
/**
  * \brief Get value of system register
 *
 * \param reg Address of the system register of which to get the value.
 *
 * \return Value of system register \a reg.
 */
#  define sysreg_read(reg)               __builtin_mfsr(reg)

/**
 * \brief Set value of system register
 *
 * \param reg Address of the system register of which to set the value.
 * \param val Value to set the system register \a reg to.
 */
#  define sysreg_write(reg, val)         __builtin_mtsr(reg, val)

#elif defined(__ICCAVR32__)
#  define sysreg_read(reg)               __get_system_register(reg)
#  define sysreg_write(reg, val)         __set_system_register(reg, val)
#endif

/* Deprecated definitions */
#define Get_system_register(reg)         sysreg_read(reg)
#define Set_system_register(reg, val)    sysreg_write((reg), (val))


/* \name Status Types
 */
typedef Bool                Status_bool_t;  //!< Boolean status.
typedef U8                  Status_t;       //!< 8-bit-coded status.


/* \name Aliasing Aggregate Types
 */

/* 16-bit union. */
typedef union
{
  S16 s16   ;
  U16 u16   ;
  S8  s8 [2];
  U8  u8 [2];
} Union16;

/* 32-bit union.*/
typedef union
{
  S32 s32   ;
  U32 u32   ;
  S16 s16[2];
  U16 u16[2];
  S8  s8 [4];
  U8  u8 [4];
} Union32;

/* 64-bit union. */
typedef union
{
  S64 s64   ;
  U64 u64   ;
  S32 s32[2];
  U32 u32[2];
  S16 s16[4];
  U16 u16[4];
  S8  s8 [8];
  U8  u8 [8];
} Union64;

/* Union of pointers to 64-, 32-, 16- and 8-bit unsigned integers. */
typedef union
{
  S64 *s64ptr;
  U64 *u64ptr;
  S32 *s32ptr;
  U32 *u32ptr;
  S16 *s16ptr;
  U16 *u16ptr;
  S8  *s8ptr ;
  U8  *u8ptr ;
} UnionPtr;

//! Union of pointers to volatile 64-, 32-, 16- and 8-bit unsigned integers.
typedef union
{
  volatile S64 *s64ptr;
  volatile U64 *u64ptr;
  volatile S32 *s32ptr;
  volatile U32 *u32ptr;
  volatile S16 *s16ptr;
  volatile U16 *u16ptr;
  volatile S8  *s8ptr ;
  volatile U8  *u8ptr ;
} UnionVPtr;

//! Union of pointers to constant 64-, 32-, 16- and 8-bit unsigned integers.
typedef union
{
  const S64 *s64ptr;
  const U64 *u64ptr;
  const S32 *s32ptr;
  const U32 *u32ptr;
  const S16 *s16ptr;
  const U16 *u16ptr;
  const S8  *s8ptr ;
  const U8  *u8ptr ;
} UnionCPtr;

//! Union of pointers to constant volatile 64-, 32-, 16- and 8-bit unsigned integers.
typedef union
{
  const volatile S64 *s64ptr;
  const volatile U64 *u64ptr;
  const volatile S32 *s32ptr;
  const volatile U32 *u32ptr;
  const volatile S16 *s16ptr;
  const volatile U16 *u16ptr;
  const volatile S8  *s8ptr ;
  const volatile U8  *u8ptr ;
} UnionCVPtr;

//! Structure of pointers to 64-, 32-, 16- and 8-bit unsigned integers.
typedef struct
{
  S64 *s64ptr;
  U64 *u64ptr;
  S32 *s32ptr;
  U32 *u32ptr;
  S16 *s16ptr;
  U16 *u16ptr;
  S8  *s8ptr ;
  U8  *u8ptr ;
} StructPtr;

//! Structure of pointers to volatile 64-, 32-, 16- and 8-bit unsigned integers.
typedef struct
{
  volatile S64 *s64ptr;
  volatile U64 *u64ptr;
  volatile S32 *s32ptr;
  volatile U32 *u32ptr;
  volatile S16 *s16ptr;
  volatile U16 *u16ptr;
  volatile S8  *s8ptr ;
  volatile U8  *u8ptr ;
} StructVPtr;

//! Structure of pointers to constant 64-, 32-, 16- and 8-bit unsigned integers.
typedef struct
{
  const S64 *s64ptr;
  const U64 *u64ptr;
  const S32 *s32ptr;
  const U32 *u32ptr;
  const S16 *s16ptr;
  const U16 *u16ptr;
  const S8  *s8ptr ;
  const U8  *u8ptr ;
} StructCPtr;

//! Structure of pointers to constant volatile 64-, 32-, 16- and 8-bit unsigned integers.
typedef struct
{
  const volatile S64 *s64ptr;
  const volatile U64 *u64ptr;
  const volatile S32 *s32ptr;
  const volatile U32 *u32ptr;
  const volatile S16 *s16ptr;
  const volatile U16 *u16ptr;
  const volatile S8  *s8ptr ;
  const volatile U8  *u8ptr ;
} StructCVPtr;

//! @}

//#endif  // __AVR32_ABI_COMPILER__


//_____ M A C R O S ________________________________________________________

/*! \name Usual Constants
 */
//! @{
#define DISABLE   0
#define ENABLE    1
#define DISABLED  0
#define ENABLED   1
#define OFF       0
#define ON        1
#define FALSE     0
#define TRUE      1
#ifndef __cplusplus
#if !defined(__bool_true_false_are_defined)
#define false     FALSE
#define true      TRUE
#endif
#endif
#define KO        0
#define OK        1
#define PASS      0
#define FAIL      1
#define LOW       0
#define HIGH      1
#define CLR       0
#define SET       1
//! @}


//#ifdef __AVR32_ABI_COMPILER__ // Automatically defined when compiling for AVR32, not when assembling.

//! \name Optimization Control
//@{

/**
 * \def likely(exp)
 * \brief The expression \a exp is likely to be true
 */
#ifndef likely
# define likely(exp)    (exp)
#endif

/**
 * \def unlikely(exp)
 * \brief The expression \a exp is unlikely to be true
 */
#ifndef unlikely
# define unlikely(exp)  (exp)
#endif

/**
 * \def is_constant(exp)
 * \brief Determine if an expression evaluates to a constant value.
 *
 * \param exp Any expression
 *
 * \return true if \a exp is constant, false otherwise.
 */
#ifdef __GNUC__
# define is_constant(exp)       __builtin_constant_p(exp)
#else
# define is_constant(exp)       (0)
#endif

//! @}

/*! \name Bit-Field Handling
 */
//! @{

/*! \brief Reads the bits of a value specified by a given bit-mask.
 *
 * \param value Value to read bits from.
 * \param mask  Bit-mask indicating bits to read.
 *
 * \return Read bits.
 */
#define Rd_bits( value, mask)        ((value) & (mask))

/*! \brief Writes the bits of a C lvalue specified by a given bit-mask.
 *
 * \param lvalue  C lvalue to write bits to.
 * \param mask    Bit-mask indicating bits to write.
 * \param bits    Bits to write.
 *
 * \return Resulting value with written bits.
 */
#define Wr_bits(lvalue, mask, bits)  ((lvalue) = ((lvalue) & ~(mask)) |\
                                                 ((bits  ) &  (mask)))

/*! \brief Tests the bits of a value specified by a given bit-mask.
 *
 * \param value Value of which to test bits.
 * \param mask  Bit-mask indicating bits to test.
 *
 * \return \c 1 if at least one of the tested bits is set, else \c 0.
 */
#define Tst_bits( value, mask)  (Rd_bits((value), (mask)) != 0)

/*! \brief Clears the bits of a C lvalue specified by a given bit-mask.
 *
 * \param lvalue  C lvalue of which to clear bits.
 * \param mask    Bit-mask indicating bits to clear.
 *
 * \return Resulting value with cleared bits.
 */
#define Clr_bits(lvalue, mask)  ((lvalue) &= ~(mask))

/*! \brief Sets the bits of a C lvalue specified by a given bit-mask.
 *
 * \param lvalue  C lvalue of which to set bits.
 * \param mask    Bit-mask indicating bits to set.
 *
 * \return Resulting value with set bits.
 */
#define Set_bits(lvalue, mask)  ((lvalue) |=  (mask))

/*! \brief Toggles the bits of a C lvalue specified by a given bit-mask.
 *
 * \param lvalue  C lvalue of which to toggle bits.
 * \param mask    Bit-mask indicating bits to toggle.
 *
 * \return Resulting value with toggled bits.
 */
#define Tgl_bits(lvalue, mask)  ((lvalue) ^=  (mask))

/*! \brief Reads the bit-field of a value specified by a given bit-mask.
 *
 * \param value Value to read a bit-field from.
 * \param mask  Bit-mask indicating the bit-field to read.
 *
 * \return Read bit-field.
 */
#define Rd_bitfield( value, mask, offset)           (Rd_bits( (value), (mask)) >> (offset))

/*! \brief Writes the bit-field of a C lvalue specified by a given bit-mask.
 *
 * \param lvalue    C lvalue to write a bit-field to.
 * \param mask      Bit-mask indicating the bit-field to write.
 * \param bitfield  Bit-field to write.
 *
 * \return Resulting value with written bit-field.
 */
#define Wr_bitfield(lvalue, mask, bitfield, offset) (Wr_bits((lvalue), (mask), (U32)(bitfield) << (offset)))
//#define Wr_bitfield(lvalue, mask, bitfield)         (Wr_bits(lvalue, mask, (U32)(bitfield) << ctz(mask)))

//! @}


/*! \brief This macro is used to test fatal errors.
 *
 * The macro tests if the expression is FALSE. If it is, a fatal error is
 * detected and the application hangs up.
 *
 * \param expr  Expression to evaluate and supposed to be nonzero.
 */
#ifdef _ASSERT_ENABLE_
  #define Assert(expr) \
  {\
    if (!(expr)) while (TRUE);\
  }
#else
  #define Assert(expr)
#endif


///*! \name Zero-Bit Counting
// *
// * Under AVR32-GCC, __builtin_clz and __builtin_ctz behave like macros when
// * applied to constant expressions (values known at compile time), so they are
// * more optimized than the use of the corresponding assembly instructions and
// * they can be used as constant expressions e.g. to initialize objects having
// * static storage duration, and like the corresponding assembly instructions
// * when applied to non-constant expressions (values unknown at compile time), so
// * they are more optimized than an assembly periphrasis. Hence, clz and ctz
// * ensure a possible and optimized behavior for both constant and non-constant
// * expressions.
// */
////! @{
///*! \brief Counts the leading zero bits of the given value considered as a 32-bit integer.
// *
// * \param u Value of which to count the leading zero bits.
// *
// * \return The count of leading zero bits in \a u.
// */
//#if (defined __GNUC__)
//  #define clz(u)              __builtin_clz(u)
//#elif (defined __ICCAVR32__)
//  #if (__VER__ == 330) && (__SUBVERSION__ <= 1)
//    // __count_leading_zeros is broken and returns a value which is offset by
//    // -32 when called with a constant parameter.
//    #define clz(v) (0 == v ? 32 : (31 & __count_leading_zeros(v)))
//  #else
//    #define clz(v) __count_leading_zeros(v)
//  #endif
//#elif (defined  __ICCARM__)
//    #define clz(v) __count_leading_zeros(v)
//#endif
//
///*! \brief Counts the trailing zero bits of the given value considered as a 32-bit integer.
// *
// * \param u Value of which to count the trailing zero bits.
// *
// * \return The count of trailing zero bits in \a u.
// */
//#if (defined __GNUC__)
//  #define ctz(u)              __builtin_ctz(u)
//#elif (defined __ICCAVR32__)
//  #define ctz(u)              __count_trailing_zeros(u)
//#endif
//
////! @}
//
////! \name Logarithmic functions
////! @{
//
///**
// * \internal
// * Undefined function. Will cause a link failure if ilog2() is called
// * with an invalid constant value.
// */
//int_fast8_t ilog2_undefined(void);
//
///**
// * \brief Calculate the base-2 logarithm of a number rounded down to
// * the nearest integer.
// *
// * \param x A 32-bit value
// * \return The base-2 logarithm of \a x, or -1 if \a x is 0.
// */
//static inline int_fast8_t ilog2(uint32_t x)
//{
//	if (is_constant(x))
//		return ((x) & (1ULL << 31) ? 31 :
//			(x) & (1ULL << 30) ? 30 :
//			(x) & (1ULL << 29) ? 29 :
//			(x) & (1ULL << 28) ? 28 :
//			(x) & (1ULL << 27) ? 27 :
//			(x) & (1ULL << 26) ? 26 :
//			(x) & (1ULL << 25) ? 25 :
//			(x) & (1ULL << 24) ? 24 :
//			(x) & (1ULL << 23) ? 23 :
//			(x) & (1ULL << 22) ? 22 :
//			(x) & (1ULL << 21) ? 21 :
//			(x) & (1ULL << 20) ? 20 :
//			(x) & (1ULL << 19) ? 19 :
//			(x) & (1ULL << 18) ? 18 :
//			(x) & (1ULL << 17) ? 17 :
//			(x) & (1ULL << 16) ? 16 :
//			(x) & (1ULL << 15) ? 15 :
//			(x) & (1ULL << 14) ? 14 :
//			(x) & (1ULL << 13) ? 13 :
//			(x) & (1ULL << 12) ? 12 :
//			(x) & (1ULL << 11) ? 11 :
//			(x) & (1ULL << 10) ? 10 :
//			(x) & (1ULL <<  9) ?  9 :
//			(x) & (1ULL <<  8) ?  8 :
//			(x) & (1ULL <<  7) ?  7 :
//			(x) & (1ULL <<  6) ?  6 :
//			(x) & (1ULL <<  5) ?  5 :
//			(x) & (1ULL <<  4) ?  4 :
//			(x) & (1ULL <<  3) ?  3 :
//			(x) & (1ULL <<  2) ?  2 :
//			(x) & (1ULL <<  1) ?  1 :
//			(x) & (1ULL <<  0) ?  0 :
//			ilog2_undefined());
//
//	return 31 - clz(x);
//}

//! @}

/*! \name Bit Reversing
 */
//! @{

/*! \brief Reverses the bits of \a u8.
 *
 * \param u8  U8 of which to reverse the bits.
 *
 * \return Value resulting from \a u8 with reversed bits.
 */
#define bit_reverse8(u8)    ((U8)(bit_reverse32((U8)(u8)) >> 24))

/*! \brief Reverses the bits of \a u16.
 *
 * \param u16 U16 of which to reverse the bits.
 *
 * \return Value resulting from \a u16 with reversed bits.
 */
#define bit_reverse16(u16)  ((U16)(bit_reverse32((U16)(u16)) >> 16))

/*! \brief Reverses the bits of \a u32.
 *
 * \param u32 U32 of which to reverse the bits.
 *
 * \return Value resulting from \a u32 with reversed bits.
 */
#if (defined __GNUC__)
  #define bit_reverse32(u32) \
  (\
    {\
      unsigned int __value = (U32)(u32);\
      __asm__ ("brev\t%0" : "+r" (__value) :  : "cc");\
      (U32)__value;\
    }\
  )
#elif (defined __ICCAVR32__)
  #define bit_reverse32(u32)  ((U32)__bit_reverse((U32)(u32)))
#endif

/*! \brief Reverses the bits of \a u64.
 *
 * \param u64 U64 of which to reverse the bits.
 *
 * \return Value resulting from \a u64 with reversed bits.
 */
#define bit_reverse64(u64)  ((U64)(((U64)bit_reverse32((U64)(u64) >> 32)) |\
                                   ((U64)bit_reverse32((U64)(u64)) << 32)))

//! @}


/*! \name Alignment
 */
//! @{

/*! \brief Tests alignment of the number \a val with the \a n boundary.
 *
 * \param val Input value.
 * \param n   Boundary.
 *
 * \return \c 1 if the number \a val is aligned with the \a n boundary, else \c 0.
 */
#define Test_align(val, n     ) (!Tst_bits( (val), (n) - 1     )   )

/*! \brief Gets alignment of the number \a val with respect to the \a n boundary.
 *
 * \param val Input value.
 * \param n   Boundary.
 *
 * \return Alignment of the number \a val with respect to the \a n boundary.
 */
#define Get_align( val, n     ) (  Rd_bits( (val), (n) - 1     )   )

/*! \brief Sets alignment of the lvalue number \a lval to \a alg with respect to the \a n boundary.
 *
 * \param lval  Input/output lvalue.
 * \param n     Boundary.
 * \param alg   Alignment.
 *
 * \return New value of \a lval resulting from its alignment set to \a alg with respect to the \a n boundary.
 */
#define Set_align(lval, n, alg) (  Wr_bits((lval), (n) - 1, (alg))   )

/*! \brief Aligns the number \a val with the upper \a n boundary.
 *
 * \param val Input value.
 * \param n   Boundary.
 *
 * \return Value resulting from the number \a val aligned with the upper \a n boundary.
 */
#define Align_up(  val, n     ) (((val) + ((n) - 1)) & ~((n) - 1))

/*! \brief Aligns the number \a val with the lower \a n boundary.
 *
 * \param val Input value.
 * \param n   Boundary.
 *
 * \return Value resulting from the number \a val aligned with the lower \a n boundary.
 */
#define Align_down(val, n     ) ( (val)              & ~((n) - 1))

//! @}

#if 0

/*! \name Mathematics
 *
 * The same considerations as for clz and ctz apply here but AVR32-GCC does not
 * provide built-in functions to access the assembly instructions abs, min and
 * max and it does not produce them by itself in most cases, so two sets of
 * macros are defined here:
 *   - Abs, Min and Max to apply to constant expressions (values known at
 *     compile time);
 *   - abs, min and max to apply to non-constant expressions (values unknown at
 *     compile time).
 */
//! @{

/*! \brief Takes the absolute value of \a a.
 *
 * \param a Input value.
 *
 * \return Absolute value of \a a.
 *
 * \note More optimized if only used with values known at compile time.
 */
#define Abs(a)              (((a) <  0 ) ? -(a) : (a))

/*! \brief Takes the minimal value of \a a and \a b.
 *
 * \param a Input value.
 * \param b Input value.
 *
 * \return Minimal value of \a a and \a b.
 *
 * \note More optimized if only used with values known at compile time.
 */
#define Min(a, b)           (((a) < (b)) ?  (a) : (b))

/*! \brief Takes the maximal value of \a a and \a b.
 *
 * \param a Input value.
 * \param b Input value.
 *
 * \return Maximal value of \a a and \a b.
 *
 * \note More optimized if only used with values known at compile time.
 */
#define Max(a, b)           (((a) > (b)) ?  (a) : (b))

/*! \brief Takes the absolute value of \a a.
 *
 * \param a Input value.
 *
 * \return Absolute value of \a a.
 *
 * \note More optimized if only used with values unknown at compile time.
 */
#if (defined __GNUC__)
  #define abs(a) \
  (\
    {\
      int __value = (a);\
      __asm__ ("abs\t%0" : "+r" (__value) :  : "cc");\
      __value;\
    }\
  )
#elif (defined __ICCAVR32__)
  #define abs(a)      Abs(a)
#endif

/*! \brief Takes the minimal value of \a a and \a b.
 *
 * \param a Input value.
 * \param b Input value.
 *
 * \return Minimal value of \a a and \a b.
 *
 * \note More optimized if only used with values unknown at compile time.
 */
#if (defined __GNUC__)
  #define min(a, b) \
  (\
    {\
      int __value, __arg_a = (a), __arg_b = (b);\
      __asm__ ("min\t%0, %1, %2" : "=r" (__value) : "r" (__arg_a), "r" (__arg_b));\
      __value;\
    }\
  )
#elif (defined __ICCAVR32__)
  #define min(a, b)   __min(a, b)
#endif

/*! \brief Takes the maximal value of \a a and \a b.
 *
 * \param a Input value.
 * \param b Input value.
 *
 * \return Maximal value of \a a and \a b.
 *
 * \note More optimized if only used with values unknown at compile time.
 */
#if (defined __GNUC__)
  #define max(a, b) \
  (\
    {\
      int __value, __arg_a = (a), __arg_b = (b);\
      __asm__ ("max\t%0, %1, %2" : "=r" (__value) : "r" (__arg_a), "r" (__arg_b));\
      __value;\
    }\
  )
#elif (defined __ICCAVR32__)
  #define max(a, b)   __max(a, b)
#endif

//! @}


/*! \brief Calls the routine at address \a addr.
 *
 * It generates a long call opcode.
 *
 * For example, `Long_call(0x80000000)' generates a software reset on a UC3 if
 * it is invoked from the CPU supervisor mode.
 *
 * \param addr  Address of the routine to call.
 *
 * \note It may be used as a long jump opcode in some special cases.
 */
#define Long_call(addr)                   ((*(void (*)(void))(addr))())

/*! \brief Resets the CPU by software.
 *
 * \warning It shall not be called from the CPU application mode.
 */
#if (defined __GNUC__)
  #define Reset_CPU() \
  (\
    {\
      __asm__ __volatile__ (\
        "lddpc   r9, 3f\n\t"\
        "mfsr    r8, %[SR]\n\t"\
        "bfextu  r8, r8, %[SR_M_OFFSET], %[SR_M_SIZE]\n\t"\
        "cp.w    r8, 0b001\n\t"\
        "breq    0f\n\t"\
        "sub     r8, pc, $ - 1f\n\t"\
        "pushm   r8-r9\n\t"\
        "rete\n"\
        "0:\n\t"\
        "mtsr    %[SR], r9\n"\
        "1:\n\t"\
        "mov     r0, 0\n\t"\
        "mov     r1, 0\n\t"\
        "mov     r2, 0\n\t"\
        "mov     r3, 0\n\t"\
        "mov     r4, 0\n\t"\
        "mov     r5, 0\n\t"\
        "mov     r6, 0\n\t"\
        "mov     r7, 0\n\t"\
        "mov     r8, 0\n\t"\
        "mov     r9, 0\n\t"\
        "mov     r10, 0\n\t"\
        "mov     r11, 0\n\t"\
        "mov     r12, 0\n\t"\
        "mov     sp, 0\n\t"\
        "stdsp   sp[0], sp\n\t"\
        "ldmts   sp, sp\n\t"\
        "mov     lr, 0\n\t"\
        "lddpc   pc, 2f\n\t"\
        ".balign 4\n"\
        "2:\n\t"\
        ".word   _start\n"\
        "3:\n\t"\
        ".word   %[RESET_SR]"\
        :\
        : [SR] "i" (AVR32_SR),\
          [SR_M_OFFSET] "i" (AVR32_SR_M_OFFSET),\
          [SR_M_SIZE] "i" (AVR32_SR_M_SIZE),\
          [RESET_SR] "i" (AVR32_SR_GM_MASK | AVR32_SR_EM_MASK | (AVR32_SR_M_SUP << AVR32_SR_M_OFFSET))\
      );\
    }\
  )
#elif (defined __ICCAVR32__)
  #define Reset_CPU() \
  {\
    extern void *volatile __program_start;\
    __asm__ __volatile__ (\
      "mov     r7, LWRD(__program_start)\n\t"\
      "orh     r7, HWRD(__program_start)\n\t"\
      "mov     r9, LWRD("ASTRINGZ(AVR32_SR_GM_MASK | AVR32_SR_EM_MASK | (AVR32_SR_M_SUP << AVR32_SR_M_OFFSET))")\n\t"\
      "orh     r9, HWRD("ASTRINGZ(AVR32_SR_GM_MASK | AVR32_SR_EM_MASK | (AVR32_SR_M_SUP << AVR32_SR_M_OFFSET))")\n\t"\
      "mfsr    r8, "ASTRINGZ(AVR32_SR)"\n\t"\
      "bfextu  r8, r8, "ASTRINGZ(AVR32_SR_M_OFFSET)", "ASTRINGZ(AVR32_SR_M_SIZE)"\n\t"\
      "cp.w    r8, 001b\n\t"\
      "breq    $ + 10\n\t"\
      "sub     r8, pc, -12\n\t"\
      "pushm   r8-r9\n\t"\
      "rete\n\t"\
      "mtsr    "ASTRINGZ(AVR32_SR)", r9\n\t"\
      "mov     r0, 0\n\t"\
      "mov     r1, 0\n\t"\
      "mov     r2, 0\n\t"\
      "mov     r3, 0\n\t"\
      "mov     r4, 0\n\t"\
      "mov     r5, 0\n\t"\
      "mov     r6, 0\n\t"\
      "st.w    r0[4], r7\n\t"\
      "mov     r7, 0\n\t"\
      "mov     r8, 0\n\t"\
      "mov     r9, 0\n\t"\
      "mov     r10, 0\n\t"\
      "mov     r11, 0\n\t"\
      "mov     r12, 0\n\t"\
      "mov     sp, 0\n\t"\
      "stdsp   sp[0], sp\n\t"\
      "ldmts   sp, sp\n\t"\
      "mov     lr, 0\n\t"\
      "ld.w    pc, lr[4]"\
    );\
    __program_start;\
  }
#endif




/*! \name CPU Status Register Access
 */
//! @{

/*! \brief Tells whether exceptions are globally enabled.
 *
 * \return \c 1 if exceptions are globally enabled, else \c 0.
 */
#define Is_global_exception_enabled()         (!Tst_bits(Get_system_register(AVR32_SR), AVR32_SR_EM_MASK))

/*! \brief Disables exceptions globally.
 */
#if (defined __GNUC__)
  #define Disable_global_exception()          ({__asm__ __volatile__ ("ssrf\t%0" :  : "i" (AVR32_SR_EM_OFFSET));})
#elif (defined __ICCAVR32__)
  #define Disable_global_exception()          (__set_status_flag(AVR32_SR_EM_OFFSET))
#endif

/*! \brief Enables exceptions globally.
 */
#if (defined __GNUC__)
  #define Enable_global_exception()           ({__asm__ __volatile__ ("csrf\t%0" :  : "i" (AVR32_SR_EM_OFFSET));})
#elif (defined __ICCAVR32__)
  #define Enable_global_exception()           (__clear_status_flag(AVR32_SR_EM_OFFSET))
#endif

//! @}


/*! \name Debug Register Access
 */
//! @{

/*! \brief Gets the value of the \a dbgreg debug register.
 *
 * \param dbgreg  Address of the debug register of which to get the value.
 *
 * \return Value of the \a dbgreg debug register.
 */
#if (defined __GNUC__)
  #define Get_debug_register(dbgreg)          __builtin_mfdr(dbgreg)
#elif (defined __ICCAVR32__)
  #define Get_debug_register(dbgreg)          __get_debug_register(dbgreg)
#endif

/*! \brief Sets the value of the \a dbgreg debug register to \a value.
 *
 * \param dbgreg  Address of the debug register of which to set the value.
 * \param value   Value to set the \a dbgreg debug register to.
 */
#if (defined __GNUC__)
  #define Set_debug_register(dbgreg, value)   __builtin_mtdr(dbgreg, value)
#elif (defined __ICCAVR32__)
  #define Set_debug_register(dbgreg, value)   __set_debug_register(dbgreg, value)
#endif

//! @}
#endif


/*! \name Force Assembly Inline Code Section
 */
//! @{
#if (defined __GNUC__)
#define __always_inline     __attribute__((__always_inline__))
#elif (defined __ICCAVR32__)
#define __always_inline     _Pragma("inline=forced")
#endif
//! @}

/*! \name MCU Endianism Handling
 * AVR32 is MCU big endianism.
 */
//! @{
#define  MSB(u16)       (((U8  *)&(u16))[0]) //!< Most significant byte of \a u16.
#define  LSB(u16)       (((U8  *)&(u16))[1]) //!< Least significant byte of \a u16.

#define  MSH(u32)       (((U16 *)&(u32))[0]) //!< Most significant half-word of \a u32.
#define  LSH(u32)       (((U16 *)&(u32))[1]) //!< Least significant half-word of \a u32.
#define  MSB0W(u32)     (((U8  *)&(u32))[0]) //!< Most significant byte of 1st rank of \a u32.
#define  MSB1W(u32)     (((U8  *)&(u32))[1]) //!< Most significant byte of 2nd rank of \a u32.
#define  MSB2W(u32)     (((U8  *)&(u32))[2]) //!< Most significant byte of 3rd rank of \a u32.
#define  MSB3W(u32)     (((U8  *)&(u32))[3]) //!< Most significant byte of 4th rank of \a u32.
#define  LSB3W(u32)     MSB0W(u32)           //!< Least significant byte of 4th rank of \a u32.
#define  LSB2W(u32)     MSB1W(u32)           //!< Least significant byte of 3rd rank of \a u32.
#define  LSB1W(u32)     MSB2W(u32)           //!< Least significant byte of 2nd rank of \a u32.
#define  LSB0W(u32)     MSB3W(u32)           //!< Least significant byte of 1st rank of \a u32.

#define  MSW(u64)       (((U32 *)&(u64))[0]) //!< Most significant word of \a u64.
#define  LSW(u64)       (((U32 *)&(u64))[1]) //!< Least significant word of \a u64.
#define  MSH0(u64)      (((U16 *)&(u64))[0]) //!< Most significant half-word of 1st rank of \a u64.
#define  MSH1(u64)      (((U16 *)&(u64))[1]) //!< Most significant half-word of 2nd rank of \a u64.
#define  MSH2(u64)      (((U16 *)&(u64))[2]) //!< Most significant half-word of 3rd rank of \a u64.
#define  MSH3(u64)      (((U16 *)&(u64))[3]) //!< Most significant half-word of 4th rank of \a u64.
#define  LSH3(u64)      MSH0(u64)            //!< Least significant half-word of 4th rank of \a u64.
#define  LSH2(u64)      MSH1(u64)            //!< Least significant half-word of 3rd rank of \a u64.
#define  LSH1(u64)      MSH2(u64)            //!< Least significant half-word of 2nd rank of \a u64.
#define  LSH0(u64)      MSH3(u64)            //!< Least significant half-word of 1st rank of \a u64.
#define  MSB0D(u64)     (((U8  *)&(u64))[0]) //!< Most significant byte of 1st rank of \a u64.
#define  MSB1D(u64)     (((U8  *)&(u64))[1]) //!< Most significant byte of 2nd rank of \a u64.
#define  MSB2D(u64)     (((U8  *)&(u64))[2]) //!< Most significant byte of 3rd rank of \a u64.
#define  MSB3D(u64)     (((U8  *)&(u64))[3]) //!< Most significant byte of 4th rank of \a u64.
#define  MSB4D(u64)     (((U8  *)&(u64))[4]) //!< Most significant byte of 5th rank of \a u64.
#define  MSB5D(u64)     (((U8  *)&(u64))[5]) //!< Most significant byte of 6th rank of \a u64.
#define  MSB6D(u64)     (((U8  *)&(u64))[6]) //!< Most significant byte of 7th rank of \a u64.
#define  MSB7D(u64)     (((U8  *)&(u64))[7]) //!< Most significant byte of 8th rank of \a u64.
#define  LSB7D(u64)     MSB0D(u64)           //!< Least significant byte of 8th rank of \a u64.
#define  LSB6D(u64)     MSB1D(u64)           //!< Least significant byte of 7th rank of \a u64.
#define  LSB5D(u64)     MSB2D(u64)           //!< Least significant byte of 6th rank of \a u64.
#define  LSB4D(u64)     MSB3D(u64)           //!< Least significant byte of 5th rank of \a u64.
#define  LSB3D(u64)     MSB4D(u64)           //!< Least significant byte of 4th rank of \a u64.
#define  LSB2D(u64)     MSB5D(u64)           //!< Least significant byte of 3rd rank of \a u64.
#define  LSB1D(u64)     MSB6D(u64)           //!< Least significant byte of 2nd rank of \a u64.
#define  LSB0D(u64)     MSB7D(u64)           //!< Least significant byte of 1st rank of \a u64.

#define  LE16(x)        Swap16(x)
#define  le16_to_cpu(x) swap16(x)
#define  cpu_to_le16(x) swap16(x)
#define  LE16_TO_CPU(x) Swap16(x)
#define  CPU_TO_LE16(x) Swap16(x)

#define  be16_to_cpu(x) (x)
#define  cpu_to_be16(x) (x)
#define  BE16_TO_CPU(x) (x)
#define  CPU_TO_BE16(x) (x)

#define  le32_to_cpu(x) swap32(x)
#define  cpu_to_le32(x) swap32(x)
#define  LE32_TO_CPU(x) Swap32(x)
#define  CPU_TO_LE32(x) Swap32(x)

#define  be32_to_cpu(x) (x)
#define  cpu_to_be32(x) (x)
#define  BE32_TO_CPU(x) (x)
#define  CPU_TO_BE32(x) (x)
//! @}


/*! \name Endianism Conversion
 *
 * The same considerations as for clz and ctz apply here but AVR32-GCC's
 * __builtin_bswap_16 and __builtin_bswap_32 do not behave like macros when
 * applied to constant expressions, so two sets of macros are defined here:
 *   - Swap16, Swap32 and Swap64 to apply to constant expressions (values known
 *     at compile time);
 *   - swap16, swap32 and swap64 to apply to non-constant expressions (values
 *     unknown at compile time).
 */
//! @{

/*! \brief Toggles the endianism of \a u16 (by swapping its bytes).
 *
 * \param u16 U16 of which to toggle the endianism.
 *
 * \return Value resulting from \a u16 with toggled endianism.
 *
 * \note More optimized if only used with values known at compile time.
 */
#define Swap16(u16) ((U16)(((U16)(u16) >> 8) |\
                           ((U16)(u16) << 8)))

/*! \brief Toggles the endianism of \a u32 (by swapping its bytes).
 *
 * \param u32 U32 of which to toggle the endianism.
 *
 * \return Value resulting from \a u32 with toggled endianism.
 *
 * \note More optimized if only used with values known at compile time.
 */
#define Swap32(u32) ((U32)(((U32)Swap16((U32)(u32) >> 16)) |\
                           ((U32)Swap16((U32)(u32)) << 16)))

/*! \brief Toggles the endianism of \a u64 (by swapping its bytes).
 *
 * \param u64 U64 of which to toggle the endianism.
 *
 * \return Value resulting from \a u64 with toggled endianism.
 *
 * \note More optimized if only used with values known at compile time.
 */
#define Swap64(u64) ((U64)(((U64)Swap32((U64)(u64) >> 32)) |\
                           ((U64)Swap32((U64)(u64)) << 32)))

/*! \brief Toggles the endianism of \a u16 (by swapping its bytes).
 *
 * \param u16 U16 of which to toggle the endianism.
 *
 * \return Value resulting from \a u16 with toggled endianism.
 *
 * \note More optimized if only used with values unknown at compile time.
 */
#if (defined __GNUC__)
  #define swap16(u16) ((U16)__builtin_bswap_16((U16)(u16)))
#elif (defined __ICCAVR32__)
  #define swap16(u16) ((U16)__swap_bytes_in_halfwords((U16)(u16)))
#endif

/*! \brief Toggles the endianism of \a u32 (by swapping its bytes).
 *
 * \param u32 U32 of which to toggle the endianism.
 *
 * \return Value resulting from \a u32 with toggled endianism.
 *
 * \note More optimized if only used with values unknown at compile time.
 */
#if (defined __GNUC__)
  #define swap32(u32) ((U32)__builtin_bswap_32((U32)(u32)))
#elif (defined __ICCAVR32__)
  #define swap32(u32) ((U32)__swap_bytes((U32)(u32)))
#endif

/*! \brief Toggles the endianism of \a u64 (by swapping its bytes).
 *
 * \param u64 U64 of which to toggle the endianism.
 *
 * \return Value resulting from \a u64 with toggled endianism.
 *
 * \note More optimized if only used with values unknown at compile time.
 */
#define swap64(u64) ((U64)(((U64)swap32((U64)(u64) >> 32)) |\
                           ((U64)swap32((U64)(u64)) << 32)))

//! @}


/*! \name Target Abstraction
 */
//! @{

#define _GLOBEXT_           extern      //!< extern storage-class specifier.
#define _CONST_TYPE_        const       //!< const type qualifier.
#define _MEM_TYPE_SLOW_                 //!< Slow memory type.
#define _MEM_TYPE_MEDFAST_              //!< Fairly fast memory type.
#define _MEM_TYPE_FAST_                 //!< Fast memory type.

typedef U8                  Byte;       //!< 8-bit unsigned integer.

#define memcmp_ram2ram      memcmp      //!< Target-specific memcmp of RAM to RAM.
#define memcmp_code2ram     memcmp      //!< Target-specific memcmp of RAM to NVRAM.
#define memcpy_ram2ram      memcpy      //!< Target-specific memcpy from RAM to RAM.
#define memcpy_code2ram     memcpy      //!< Target-specific memcpy from NVRAM to RAM.

#define LSB0(u32)           LSB0W(u32)  //!< Least significant byte of 1st rank of \a u32.
#define LSB1(u32)           LSB1W(u32)  //!< Least significant byte of 2nd rank of \a u32.
#define LSB2(u32)           LSB2W(u32)  //!< Least significant byte of 3rd rank of \a u32.
#define LSB3(u32)           LSB3W(u32)  //!< Least significant byte of 4th rank of \a u32.
#define MSB3(u32)           MSB3W(u32)  //!< Most significant byte of 4th rank of \a u32.
#define MSB2(u32)           MSB2W(u32)  //!< Most significant byte of 3rd rank of \a u32.
#define MSB1(u32)           MSB1W(u32)  //!< Most significant byte of 2nd rank of \a u32.
#define MSB0(u32)           MSB0W(u32)  //!< Most significant byte of 1st rank of \a u32.

//! @}

//#endif  // __AVR32_ABI_COMPILER__


#endif  // _COMPILER_H_