aboutsummaryrefslogtreecommitdiff
path: root/simd/arm/jidctint-neon.c
blob: d25112ef7fd2bf87181b8574c269d2b8b9025fad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
/*
 * jidctint-neon.c - accurate integer IDCT (Arm Neon)
 *
 * Copyright (C) 2020, Arm Limited.  All Rights Reserved.
 * Copyright (C) 2020, D. R. Commander.  All Rights Reserved.
 *
 * This software is provided 'as-is', without any express or implied
 * warranty.  In no event will the authors be held liable for any damages
 * arising from the use of this software.
 *
 * Permission is granted to anyone to use this software for any purpose,
 * including commercial applications, and to alter it and redistribute it
 * freely, subject to the following restrictions:
 *
 * 1. The origin of this software must not be misrepresented; you must not
 *    claim that you wrote the original software. If you use this software
 *    in a product, an acknowledgment in the product documentation would be
 *    appreciated but is not required.
 * 2. Altered source versions must be plainly marked as such, and must not be
 *    misrepresented as being the original software.
 * 3. This notice may not be removed or altered from any source distribution.
 */

#define JPEG_INTERNALS
#include "../../jinclude.h"
#include "../../jpeglib.h"
#include "../../jsimd.h"
#include "../../jdct.h"
#include "../../jsimddct.h"
#include "../jsimd.h"
#include "align.h"
#include "neon-compat.h"

#include <arm_neon.h>


#define CONST_BITS  13
#define PASS1_BITS  2

#define DESCALE_P1  (CONST_BITS - PASS1_BITS)
#define DESCALE_P2  (CONST_BITS + PASS1_BITS + 3)

/* The computation of the inverse DCT requires the use of constants known at
 * compile time.  Scaled integer constants are used to avoid floating-point
 * arithmetic:
 *    0.298631336 =  2446 * 2^-13
 *    0.390180644 =  3196 * 2^-13
 *    0.541196100 =  4433 * 2^-13
 *    0.765366865 =  6270 * 2^-13
 *    0.899976223 =  7373 * 2^-13
 *    1.175875602 =  9633 * 2^-13
 *    1.501321110 = 12299 * 2^-13
 *    1.847759065 = 15137 * 2^-13
 *    1.961570560 = 16069 * 2^-13
 *    2.053119869 = 16819 * 2^-13
 *    2.562915447 = 20995 * 2^-13
 *    3.072711026 = 25172 * 2^-13
 */

#define F_0_298  2446
#define F_0_390  3196
#define F_0_541  4433
#define F_0_765  6270
#define F_0_899  7373
#define F_1_175  9633
#define F_1_501  12299
#define F_1_847  15137
#define F_1_961  16069
#define F_2_053  16819
#define F_2_562  20995
#define F_3_072  25172

#define F_1_175_MINUS_1_961  (F_1_175 - F_1_961)
#define F_1_175_MINUS_0_390  (F_1_175 - F_0_390)
#define F_0_541_MINUS_1_847  (F_0_541 - F_1_847)
#define F_3_072_MINUS_2_562  (F_3_072 - F_2_562)
#define F_0_298_MINUS_0_899  (F_0_298 - F_0_899)
#define F_1_501_MINUS_0_899  (F_1_501 - F_0_899)
#define F_2_053_MINUS_2_562  (F_2_053 - F_2_562)
#define F_0_541_PLUS_0_765   (F_0_541 + F_0_765)


ALIGN(16) static const int16_t jsimd_idct_islow_neon_consts[] = {
  F_0_899,             F_0_541,
  F_2_562,             F_0_298_MINUS_0_899,
  F_1_501_MINUS_0_899, F_2_053_MINUS_2_562,
  F_0_541_PLUS_0_765,  F_1_175,
  F_1_175_MINUS_0_390, F_0_541_MINUS_1_847,
  F_3_072_MINUS_2_562, F_1_175_MINUS_1_961,
  0, 0, 0, 0
};


/* Forward declaration of regular and sparse IDCT helper functions */

static INLINE void jsimd_idct_islow_pass1_regular(int16x4_t row0,
                                                  int16x4_t row1,
                                                  int16x4_t row2,
                                                  int16x4_t row3,
                                                  int16x4_t row4,
                                                  int16x4_t row5,
                                                  int16x4_t row6,
                                                  int16x4_t row7,
                                                  int16x4_t quant_row0,
                                                  int16x4_t quant_row1,
                                                  int16x4_t quant_row2,
                                                  int16x4_t quant_row3,
                                                  int16x4_t quant_row4,
                                                  int16x4_t quant_row5,
                                                  int16x4_t quant_row6,
                                                  int16x4_t quant_row7,
                                                  int16_t *workspace_1,
                                                  int16_t *workspace_2);

static INLINE void jsimd_idct_islow_pass1_sparse(int16x4_t row0,
                                                 int16x4_t row1,
                                                 int16x4_t row2,
                                                 int16x4_t row3,
                                                 int16x4_t quant_row0,
                                                 int16x4_t quant_row1,
                                                 int16x4_t quant_row2,
                                                 int16x4_t quant_row3,
                                                 int16_t *workspace_1,
                                                 int16_t *workspace_2);

static INLINE void jsimd_idct_islow_pass2_regular(int16_t *workspace,
                                                  JSAMPARRAY output_buf,
                                                  JDIMENSION output_col,
                                                  unsigned buf_offset);

static INLINE void jsimd_idct_islow_pass2_sparse(int16_t *workspace,
                                                 JSAMPARRAY output_buf,
                                                 JDIMENSION output_col,
                                                 unsigned buf_offset);


/* Perform dequantization and inverse DCT on one block of coefficients.  For
 * reference, the C implementation (jpeg_idct_slow()) can be found in
 * jidctint.c.
 *
 * Optimization techniques used for fast data access:
 *
 * In each pass, the inverse DCT is computed for the left and right 4x8 halves
 * of the DCT block.  This avoids spilling due to register pressure, and the
 * increased granularity allows for an optimized calculation depending on the
 * values of the DCT coefficients.  Between passes, intermediate data is stored
 * in 4x8 workspace buffers.
 *
 * Transposing the 8x8 DCT block after each pass can be achieved by transposing
 * each of the four 4x4 quadrants and swapping quadrants 1 and 2 (refer to the
 * diagram below.)  Swapping quadrants is cheap, since the second pass can just
 * swap the workspace buffer pointers.
 *
 *      +-------+-------+                   +-------+-------+
 *      |       |       |                   |       |       |
 *      |   0   |   1   |                   |   0   |   2   |
 *      |       |       |    transpose      |       |       |
 *      +-------+-------+     ------>       +-------+-------+
 *      |       |       |                   |       |       |
 *      |   2   |   3   |                   |   1   |   3   |
 *      |       |       |                   |       |       |
 *      +-------+-------+                   +-------+-------+
 *
 * Optimization techniques used to accelerate the inverse DCT calculation:
 *
 * In a DCT coefficient block, the coefficients are increasingly likely to be 0
 * as you move diagonally from top left to bottom right.  If whole rows of
 * coefficients are 0, then the inverse DCT calculation can be simplified.  On
 * the first pass of the inverse DCT, we test for three special cases before
 * defaulting to a full "regular" inverse DCT:
 *
 * 1) Coefficients in rows 4-7 are all zero.  In this case, we perform a
 *    "sparse" simplified inverse DCT on rows 0-3.
 * 2) AC coefficients (rows 1-7) are all zero.  In this case, the inverse DCT
 *    result is equal to the dequantized DC coefficients.
 * 3) AC and DC coefficients are all zero.  In this case, the inverse DCT
 *    result is all zero.  For the left 4x8 half, this is handled identically
 *    to Case 2 above.  For the right 4x8 half, we do no work and signal that
 *    the "sparse" algorithm is required for the second pass.
 *
 * In the second pass, only a single special case is tested: whether the AC and
 * DC coefficients were all zero in the right 4x8 block during the first pass
 * (refer to Case 3 above.)  If this is the case, then a "sparse" variant of
 * the second pass is performed for both the left and right halves of the DCT
 * block.  (The transposition after the first pass means that the right 4x8
 * block during the first pass becomes rows 4-7 during the second pass.)
 */

void jsimd_idct_islow_neon(void *dct_table, JCOEFPTR coef_block,
                           JSAMPARRAY output_buf, JDIMENSION output_col)
{
  ISLOW_MULT_TYPE *quantptr = dct_table;

  int16_t workspace_l[8 * DCTSIZE / 2];
  int16_t workspace_r[8 * DCTSIZE / 2];

  /* Compute IDCT first pass on left 4x8 coefficient block. */

  /* Load DCT coefficients in left 4x8 block. */
  int16x4_t row0 = vld1_s16(coef_block + 0 * DCTSIZE);
  int16x4_t row1 = vld1_s16(coef_block + 1 * DCTSIZE);
  int16x4_t row2 = vld1_s16(coef_block + 2 * DCTSIZE);
  int16x4_t row3 = vld1_s16(coef_block + 3 * DCTSIZE);
  int16x4_t row4 = vld1_s16(coef_block + 4 * DCTSIZE);
  int16x4_t row5 = vld1_s16(coef_block + 5 * DCTSIZE);
  int16x4_t row6 = vld1_s16(coef_block + 6 * DCTSIZE);
  int16x4_t row7 = vld1_s16(coef_block + 7 * DCTSIZE);

  /* Load quantization table for left 4x8 block. */
  int16x4_t quant_row0 = vld1_s16(quantptr + 0 * DCTSIZE);
  int16x4_t quant_row1 = vld1_s16(quantptr + 1 * DCTSIZE);
  int16x4_t quant_row2 = vld1_s16(quantptr + 2 * DCTSIZE);
  int16x4_t quant_row3 = vld1_s16(quantptr + 3 * DCTSIZE);
  int16x4_t quant_row4 = vld1_s16(quantptr + 4 * DCTSIZE);
  int16x4_t quant_row5 = vld1_s16(quantptr + 5 * DCTSIZE);
  int16x4_t quant_row6 = vld1_s16(quantptr + 6 * DCTSIZE);
  int16x4_t quant_row7 = vld1_s16(quantptr + 7 * DCTSIZE);

  /* Construct bitmap to test if DCT coefficients in left 4x8 block are 0. */
  int16x4_t bitmap = vorr_s16(row7, row6);
  bitmap = vorr_s16(bitmap, row5);
  bitmap = vorr_s16(bitmap, row4);
  int64_t bitmap_rows_4567 = vget_lane_s64(vreinterpret_s64_s16(bitmap), 0);

  if (bitmap_rows_4567 == 0) {
    bitmap = vorr_s16(bitmap, row3);
    bitmap = vorr_s16(bitmap, row2);
    bitmap = vorr_s16(bitmap, row1);
    int64_t left_ac_bitmap = vget_lane_s64(vreinterpret_s64_s16(bitmap), 0);

    if (left_ac_bitmap == 0) {
      int16x4_t dcval = vshl_n_s16(vmul_s16(row0, quant_row0), PASS1_BITS);
      int16x4x4_t quadrant = { { dcval, dcval, dcval, dcval } };
      /* Store 4x4 blocks to workspace, transposing in the process. */
      vst4_s16(workspace_l, quadrant);
      vst4_s16(workspace_r, quadrant);
    } else {
      jsimd_idct_islow_pass1_sparse(row0, row1, row2, row3, quant_row0,
                                    quant_row1, quant_row2, quant_row3,
                                    workspace_l, workspace_r);
    }
  } else {
    jsimd_idct_islow_pass1_regular(row0, row1, row2, row3, row4, row5,
                                   row6, row7, quant_row0, quant_row1,
                                   quant_row2, quant_row3, quant_row4,
                                   quant_row5, quant_row6, quant_row7,
                                   workspace_l, workspace_r);
  }

  /* Compute IDCT first pass on right 4x8 coefficient block. */

  /* Load DCT coefficients in right 4x8 block. */
  row0 = vld1_s16(coef_block + 0 * DCTSIZE + 4);
  row1 = vld1_s16(coef_block + 1 * DCTSIZE + 4);
  row2 = vld1_s16(coef_block + 2 * DCTSIZE + 4);
  row3 = vld1_s16(coef_block + 3 * DCTSIZE + 4);
  row4 = vld1_s16(coef_block + 4 * DCTSIZE + 4);
  row5 = vld1_s16(coef_block + 5 * DCTSIZE + 4);
  row6 = vld1_s16(coef_block + 6 * DCTSIZE + 4);
  row7 = vld1_s16(coef_block + 7 * DCTSIZE + 4);

  /* Load quantization table for right 4x8 block. */
  quant_row0 = vld1_s16(quantptr + 0 * DCTSIZE + 4);
  quant_row1 = vld1_s16(quantptr + 1 * DCTSIZE + 4);
  quant_row2 = vld1_s16(quantptr + 2 * DCTSIZE + 4);
  quant_row3 = vld1_s16(quantptr + 3 * DCTSIZE + 4);
  quant_row4 = vld1_s16(quantptr + 4 * DCTSIZE + 4);
  quant_row5 = vld1_s16(quantptr + 5 * DCTSIZE + 4);
  quant_row6 = vld1_s16(quantptr + 6 * DCTSIZE + 4);
  quant_row7 = vld1_s16(quantptr + 7 * DCTSIZE + 4);

  /* Construct bitmap to test if DCT coefficients in right 4x8 block are 0. */
  bitmap = vorr_s16(row7, row6);
  bitmap = vorr_s16(bitmap, row5);
  bitmap = vorr_s16(bitmap, row4);
  bitmap_rows_4567 = vget_lane_s64(vreinterpret_s64_s16(bitmap), 0);
  bitmap = vorr_s16(bitmap, row3);
  bitmap = vorr_s16(bitmap, row2);
  bitmap = vorr_s16(bitmap, row1);
  int64_t right_ac_bitmap = vget_lane_s64(vreinterpret_s64_s16(bitmap), 0);

  /* If this remains non-zero, a "regular" second pass will be performed. */
  int64_t right_ac_dc_bitmap = 1;

  if (right_ac_bitmap == 0) {
    bitmap = vorr_s16(bitmap, row0);
    right_ac_dc_bitmap = vget_lane_s64(vreinterpret_s64_s16(bitmap), 0);

    if (right_ac_dc_bitmap != 0) {
      int16x4_t dcval = vshl_n_s16(vmul_s16(row0, quant_row0), PASS1_BITS);
      int16x4x4_t quadrant = { { dcval, dcval, dcval, dcval } };
      /* Store 4x4 blocks to workspace, transposing in the process. */
      vst4_s16(workspace_l + 4 * DCTSIZE / 2, quadrant);
      vst4_s16(workspace_r + 4 * DCTSIZE / 2, quadrant);
    }
  } else {
    if (bitmap_rows_4567 == 0) {
      jsimd_idct_islow_pass1_sparse(row0, row1, row2, row3, quant_row0,
                                    quant_row1, quant_row2, quant_row3,
                                    workspace_l + 4 * DCTSIZE / 2,
                                    workspace_r + 4 * DCTSIZE / 2);
    } else {
      jsimd_idct_islow_pass1_regular(row0, row1, row2, row3, row4, row5,
                                     row6, row7, quant_row0, quant_row1,
                                     quant_row2, quant_row3, quant_row4,
                                     quant_row5, quant_row6, quant_row7,
                                     workspace_l + 4 * DCTSIZE / 2,
                                     workspace_r + 4 * DCTSIZE / 2);
    }
  }

  /* Second pass: compute IDCT on rows in workspace. */

  /* If all coefficients in right 4x8 block are 0, use "sparse" second pass. */
  if (right_ac_dc_bitmap == 0) {
    jsimd_idct_islow_pass2_sparse(workspace_l, output_buf, output_col, 0);
    jsimd_idct_islow_pass2_sparse(workspace_r, output_buf, output_col, 4);
  } else {
    jsimd_idct_islow_pass2_regular(workspace_l, output_buf, output_col, 0);
    jsimd_idct_islow_pass2_regular(workspace_r, output_buf, output_col, 4);
  }
}


/* Perform dequantization and the first pass of the accurate inverse DCT on a
 * 4x8 block of coefficients.  (To process the full 8x8 DCT block, this
 * function-- or some other optimized variant-- needs to be called for both the
 * left and right 4x8 blocks.)
 *
 * This "regular" version assumes that no optimization can be made to the IDCT
 * calculation, since no useful set of AC coefficients is all 0.
 *
 * The original C implementation of the accurate IDCT (jpeg_idct_slow()) can be
 * found in jidctint.c.  Algorithmic changes made here are documented inline.
 */

static INLINE void jsimd_idct_islow_pass1_regular(int16x4_t row0,
                                                  int16x4_t row1,
                                                  int16x4_t row2,
                                                  int16x4_t row3,
                                                  int16x4_t row4,
                                                  int16x4_t row5,
                                                  int16x4_t row6,
                                                  int16x4_t row7,
                                                  int16x4_t quant_row0,
                                                  int16x4_t quant_row1,
                                                  int16x4_t quant_row2,
                                                  int16x4_t quant_row3,
                                                  int16x4_t quant_row4,
                                                  int16x4_t quant_row5,
                                                  int16x4_t quant_row6,
                                                  int16x4_t quant_row7,
                                                  int16_t *workspace_1,
                                                  int16_t *workspace_2)
{
  /* Load constants for IDCT computation. */
#ifdef HAVE_VLD1_S16_X3
  const int16x4x3_t consts = vld1_s16_x3(jsimd_idct_islow_neon_consts);
#else
  const int16x4_t consts1 = vld1_s16(jsimd_idct_islow_neon_consts);
  const int16x4_t consts2 = vld1_s16(jsimd_idct_islow_neon_consts + 4);
  const int16x4_t consts3 = vld1_s16(jsimd_idct_islow_neon_consts + 8);
  const int16x4x3_t consts = { { consts1, consts2, consts3 } };
#endif

  /* Even part */
  int16x4_t z2_s16 = vmul_s16(row2, quant_row2);
  int16x4_t z3_s16 = vmul_s16(row6, quant_row6);

  int32x4_t tmp2 = vmull_lane_s16(z2_s16, consts.val[0], 1);
  int32x4_t tmp3 = vmull_lane_s16(z2_s16, consts.val[1], 2);
  tmp2 = vmlal_lane_s16(tmp2, z3_s16, consts.val[2], 1);
  tmp3 = vmlal_lane_s16(tmp3, z3_s16, consts.val[0], 1);

  z2_s16 = vmul_s16(row0, quant_row0);
  z3_s16 = vmul_s16(row4, quant_row4);

  int32x4_t tmp0 = vshll_n_s16(vadd_s16(z2_s16, z3_s16), CONST_BITS);
  int32x4_t tmp1 = vshll_n_s16(vsub_s16(z2_s16, z3_s16), CONST_BITS);

  int32x4_t tmp10 = vaddq_s32(tmp0, tmp3);
  int32x4_t tmp13 = vsubq_s32(tmp0, tmp3);
  int32x4_t tmp11 = vaddq_s32(tmp1, tmp2);
  int32x4_t tmp12 = vsubq_s32(tmp1, tmp2);

  /* Odd part */
  int16x4_t tmp0_s16 = vmul_s16(row7, quant_row7);
  int16x4_t tmp1_s16 = vmul_s16(row5, quant_row5);
  int16x4_t tmp2_s16 = vmul_s16(row3, quant_row3);
  int16x4_t tmp3_s16 = vmul_s16(row1, quant_row1);

  z3_s16 = vadd_s16(tmp0_s16, tmp2_s16);
  int16x4_t z4_s16 = vadd_s16(tmp1_s16, tmp3_s16);

  /* Implementation as per jpeg_idct_islow() in jidctint.c:
   *   z5 = (z3 + z4) * 1.175875602;
   *   z3 = z3 * -1.961570560;  z4 = z4 * -0.390180644;
   *   z3 += z5;  z4 += z5;
   *
   * This implementation:
   *   z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602;
   *   z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644);
   */

  int32x4_t z3 = vmull_lane_s16(z3_s16, consts.val[2], 3);
  int32x4_t z4 = vmull_lane_s16(z3_s16, consts.val[1], 3);
  z3 = vmlal_lane_s16(z3, z4_s16, consts.val[1], 3);
  z4 = vmlal_lane_s16(z4, z4_s16, consts.val[2], 0);

  /* Implementation as per jpeg_idct_islow() in jidctint.c:
   *   z1 = tmp0 + tmp3;  z2 = tmp1 + tmp2;
   *   tmp0 = tmp0 * 0.298631336;  tmp1 = tmp1 * 2.053119869;
   *   tmp2 = tmp2 * 3.072711026;  tmp3 = tmp3 * 1.501321110;
   *   z1 = z1 * -0.899976223;  z2 = z2 * -2.562915447;
   *   tmp0 += z1 + z3;  tmp1 += z2 + z4;
   *   tmp2 += z2 + z3;  tmp3 += z1 + z4;
   *
   * This implementation:
   *   tmp0 = tmp0 * (0.298631336 - 0.899976223) + tmp3 * -0.899976223;
   *   tmp1 = tmp1 * (2.053119869 - 2.562915447) + tmp2 * -2.562915447;
   *   tmp2 = tmp1 * -2.562915447 + tmp2 * (3.072711026 - 2.562915447);
   *   tmp3 = tmp0 * -0.899976223 + tmp3 * (1.501321110 - 0.899976223);
   *   tmp0 += z3;  tmp1 += z4;
   *   tmp2 += z3;  tmp3 += z4;
   */

  tmp0 = vmull_lane_s16(tmp0_s16, consts.val[0], 3);
  tmp1 = vmull_lane_s16(tmp1_s16, consts.val[1], 1);
  tmp2 = vmull_lane_s16(tmp2_s16, consts.val[2], 2);
  tmp3 = vmull_lane_s16(tmp3_s16, consts.val[1], 0);

  tmp0 = vmlsl_lane_s16(tmp0, tmp3_s16, consts.val[0], 0);
  tmp1 = vmlsl_lane_s16(tmp1, tmp2_s16, consts.val[0], 2);
  tmp2 = vmlsl_lane_s16(tmp2, tmp1_s16, consts.val[0], 2);
  tmp3 = vmlsl_lane_s16(tmp3, tmp0_s16, consts.val[0], 0);

  tmp0 = vaddq_s32(tmp0, z3);
  tmp1 = vaddq_s32(tmp1, z4);
  tmp2 = vaddq_s32(tmp2, z3);
  tmp3 = vaddq_s32(tmp3, z4);

  /* Final output stage: descale and narrow to 16-bit. */
  int16x4x4_t rows_0123 = { {
    vrshrn_n_s32(vaddq_s32(tmp10, tmp3), DESCALE_P1),
    vrshrn_n_s32(vaddq_s32(tmp11, tmp2), DESCALE_P1),
    vrshrn_n_s32(vaddq_s32(tmp12, tmp1), DESCALE_P1),
    vrshrn_n_s32(vaddq_s32(tmp13, tmp0), DESCALE_P1)
  } };
  int16x4x4_t rows_4567 = { {
    vrshrn_n_s32(vsubq_s32(tmp13, tmp0), DESCALE_P1),
    vrshrn_n_s32(vsubq_s32(tmp12, tmp1), DESCALE_P1),
    vrshrn_n_s32(vsubq_s32(tmp11, tmp2), DESCALE_P1),
    vrshrn_n_s32(vsubq_s32(tmp10, tmp3), DESCALE_P1)
  } };

  /* Store 4x4 blocks to the intermediate workspace, ready for the second pass.
   * (VST4 transposes the blocks.  We need to operate on rows in the next
   * pass.)
   */
  vst4_s16(workspace_1, rows_0123);
  vst4_s16(workspace_2, rows_4567);
}


/* Perform dequantization and the first pass of the accurate inverse DCT on a
 * 4x8 block of coefficients.
 *
 * This "sparse" version assumes that the AC coefficients in rows 4-7 are all
 * 0.  This simplifies the IDCT calculation, accelerating overall performance.
 */

static INLINE void jsimd_idct_islow_pass1_sparse(int16x4_t row0,
                                                 int16x4_t row1,
                                                 int16x4_t row2,
                                                 int16x4_t row3,
                                                 int16x4_t quant_row0,
                                                 int16x4_t quant_row1,
                                                 int16x4_t quant_row2,
                                                 int16x4_t quant_row3,
                                                 int16_t *workspace_1,
                                                 int16_t *workspace_2)
{
  /* Load constants for IDCT computation. */
#ifdef HAVE_VLD1_S16_X3
  const int16x4x3_t consts = vld1_s16_x3(jsimd_idct_islow_neon_consts);
#else
  const int16x4_t consts1 = vld1_s16(jsimd_idct_islow_neon_consts);
  const int16x4_t consts2 = vld1_s16(jsimd_idct_islow_neon_consts + 4);
  const int16x4_t consts3 = vld1_s16(jsimd_idct_islow_neon_consts + 8);
  const int16x4x3_t consts = { { consts1, consts2, consts3 } };
#endif

  /* Even part (z3 is all 0) */
  int16x4_t z2_s16 = vmul_s16(row2, quant_row2);

  int32x4_t tmp2 = vmull_lane_s16(z2_s16, consts.val[0], 1);
  int32x4_t tmp3 = vmull_lane_s16(z2_s16, consts.val[1], 2);

  z2_s16 = vmul_s16(row0, quant_row0);
  int32x4_t tmp0 = vshll_n_s16(z2_s16, CONST_BITS);
  int32x4_t tmp1 = vshll_n_s16(z2_s16, CONST_BITS);

  int32x4_t tmp10 = vaddq_s32(tmp0, tmp3);
  int32x4_t tmp13 = vsubq_s32(tmp0, tmp3);
  int32x4_t tmp11 = vaddq_s32(tmp1, tmp2);
  int32x4_t tmp12 = vsubq_s32(tmp1, tmp2);

  /* Odd part (tmp0 and tmp1 are both all 0) */
  int16x4_t tmp2_s16 = vmul_s16(row3, quant_row3);
  int16x4_t tmp3_s16 = vmul_s16(row1, quant_row1);

  int16x4_t z3_s16 = tmp2_s16;
  int16x4_t z4_s16 = tmp3_s16;

  int32x4_t z3 = vmull_lane_s16(z3_s16, consts.val[2], 3);
  int32x4_t z4 = vmull_lane_s16(z3_s16, consts.val[1], 3);
  z3 = vmlal_lane_s16(z3, z4_s16, consts.val[1], 3);
  z4 = vmlal_lane_s16(z4, z4_s16, consts.val[2], 0);

  tmp0 = vmlsl_lane_s16(z3, tmp3_s16, consts.val[0], 0);
  tmp1 = vmlsl_lane_s16(z4, tmp2_s16, consts.val[0], 2);
  tmp2 = vmlal_lane_s16(z3, tmp2_s16, consts.val[2], 2);
  tmp3 = vmlal_lane_s16(z4, tmp3_s16, consts.val[1], 0);

  /* Final output stage: descale and narrow to 16-bit. */
  int16x4x4_t rows_0123 = { {
    vrshrn_n_s32(vaddq_s32(tmp10, tmp3), DESCALE_P1),
    vrshrn_n_s32(vaddq_s32(tmp11, tmp2), DESCALE_P1),
    vrshrn_n_s32(vaddq_s32(tmp12, tmp1), DESCALE_P1),
    vrshrn_n_s32(vaddq_s32(tmp13, tmp0), DESCALE_P1)
  } };
  int16x4x4_t rows_4567 = { {
    vrshrn_n_s32(vsubq_s32(tmp13, tmp0), DESCALE_P1),
    vrshrn_n_s32(vsubq_s32(tmp12, tmp1), DESCALE_P1),
    vrshrn_n_s32(vsubq_s32(tmp11, tmp2), DESCALE_P1),
    vrshrn_n_s32(vsubq_s32(tmp10, tmp3), DESCALE_P1)
  } };

  /* Store 4x4 blocks to the intermediate workspace, ready for the second pass.
   * (VST4 transposes the blocks.  We need to operate on rows in the next
   * pass.)
   */
  vst4_s16(workspace_1, rows_0123);
  vst4_s16(workspace_2, rows_4567);
}


/* Perform the second pass of the accurate inverse DCT on a 4x8 block of
 * coefficients.  (To process the full 8x8 DCT block, this function-- or some
 * other optimized variant-- needs to be called for both the right and left 4x8
 * blocks.)
 *
 * This "regular" version assumes that no optimization can be made to the IDCT
 * calculation, since no useful set of coefficient values are all 0 after the
 * first pass.
 *
 * Again, the original C implementation of the accurate IDCT (jpeg_idct_slow())
 * can be found in jidctint.c.  Algorithmic changes made here are documented
 * inline.
 */

static INLINE void jsimd_idct_islow_pass2_regular(int16_t *workspace,
                                                  JSAMPARRAY output_buf,
                                                  JDIMENSION output_col,
                                                  unsigned buf_offset)
{
  /* Load constants for IDCT computation. */
#ifdef HAVE_VLD1_S16_X3
  const int16x4x3_t consts = vld1_s16_x3(jsimd_idct_islow_neon_consts);
#else
  const int16x4_t consts1 = vld1_s16(jsimd_idct_islow_neon_consts);
  const int16x4_t consts2 = vld1_s16(jsimd_idct_islow_neon_consts + 4);
  const int16x4_t consts3 = vld1_s16(jsimd_idct_islow_neon_consts + 8);
  const int16x4x3_t consts = { { consts1, consts2, consts3 } };
#endif

  /* Even part */
  int16x4_t z2_s16 = vld1_s16(workspace + 2 * DCTSIZE / 2);
  int16x4_t z3_s16 = vld1_s16(workspace + 6 * DCTSIZE / 2);

  int32x4_t tmp2 = vmull_lane_s16(z2_s16, consts.val[0], 1);
  int32x4_t tmp3 = vmull_lane_s16(z2_s16, consts.val[1], 2);
  tmp2 = vmlal_lane_s16(tmp2, z3_s16, consts.val[2], 1);
  tmp3 = vmlal_lane_s16(tmp3, z3_s16, consts.val[0], 1);

  z2_s16 = vld1_s16(workspace + 0 * DCTSIZE / 2);
  z3_s16 = vld1_s16(workspace + 4 * DCTSIZE / 2);

  int32x4_t tmp0 = vshll_n_s16(vadd_s16(z2_s16, z3_s16), CONST_BITS);
  int32x4_t tmp1 = vshll_n_s16(vsub_s16(z2_s16, z3_s16), CONST_BITS);

  int32x4_t tmp10 = vaddq_s32(tmp0, tmp3);
  int32x4_t tmp13 = vsubq_s32(tmp0, tmp3);
  int32x4_t tmp11 = vaddq_s32(tmp1, tmp2);
  int32x4_t tmp12 = vsubq_s32(tmp1, tmp2);

  /* Odd part */
  int16x4_t tmp0_s16 = vld1_s16(workspace + 7 * DCTSIZE / 2);
  int16x4_t tmp1_s16 = vld1_s16(workspace + 5 * DCTSIZE / 2);
  int16x4_t tmp2_s16 = vld1_s16(workspace + 3 * DCTSIZE / 2);
  int16x4_t tmp3_s16 = vld1_s16(workspace + 1 * DCTSIZE / 2);

  z3_s16 = vadd_s16(tmp0_s16, tmp2_s16);
  int16x4_t z4_s16 = vadd_s16(tmp1_s16, tmp3_s16);

  /* Implementation as per jpeg_idct_islow() in jidctint.c:
   *   z5 = (z3 + z4) * 1.175875602;
   *   z3 = z3 * -1.961570560;  z4 = z4 * -0.390180644;
   *   z3 += z5;  z4 += z5;
   *
   * This implementation:
   *   z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602;
   *   z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644);
   */

  int32x4_t z3 = vmull_lane_s16(z3_s16, consts.val[2], 3);
  int32x4_t z4 = vmull_lane_s16(z3_s16, consts.val[1], 3);
  z3 = vmlal_lane_s16(z3, z4_s16, consts.val[1], 3);
  z4 = vmlal_lane_s16(z4, z4_s16, consts.val[2], 0);

  /* Implementation as per jpeg_idct_islow() in jidctint.c:
   *   z1 = tmp0 + tmp3;  z2 = tmp1 + tmp2;
   *   tmp0 = tmp0 * 0.298631336;  tmp1 = tmp1 * 2.053119869;
   *   tmp2 = tmp2 * 3.072711026;  tmp3 = tmp3 * 1.501321110;
   *   z1 = z1 * -0.899976223;  z2 = z2 * -2.562915447;
   *   tmp0 += z1 + z3;  tmp1 += z2 + z4;
   *   tmp2 += z2 + z3;  tmp3 += z1 + z4;
   *
   * This implementation:
   *   tmp0 = tmp0 * (0.298631336 - 0.899976223) + tmp3 * -0.899976223;
   *   tmp1 = tmp1 * (2.053119869 - 2.562915447) + tmp2 * -2.562915447;
   *   tmp2 = tmp1 * -2.562915447 + tmp2 * (3.072711026 - 2.562915447);
   *   tmp3 = tmp0 * -0.899976223 + tmp3 * (1.501321110 - 0.899976223);
   *   tmp0 += z3;  tmp1 += z4;
   *   tmp2 += z3;  tmp3 += z4;
   */

  tmp0 = vmull_lane_s16(tmp0_s16, consts.val[0], 3);
  tmp1 = vmull_lane_s16(tmp1_s16, consts.val[1], 1);
  tmp2 = vmull_lane_s16(tmp2_s16, consts.val[2], 2);
  tmp3 = vmull_lane_s16(tmp3_s16, consts.val[1], 0);

  tmp0 = vmlsl_lane_s16(tmp0, tmp3_s16, consts.val[0], 0);
  tmp1 = vmlsl_lane_s16(tmp1, tmp2_s16, consts.val[0], 2);
  tmp2 = vmlsl_lane_s16(tmp2, tmp1_s16, consts.val[0], 2);
  tmp3 = vmlsl_lane_s16(tmp3, tmp0_s16, consts.val[0], 0);

  tmp0 = vaddq_s32(tmp0, z3);
  tmp1 = vaddq_s32(tmp1, z4);
  tmp2 = vaddq_s32(tmp2, z3);
  tmp3 = vaddq_s32(tmp3, z4);

  /* Final output stage: descale and narrow to 16-bit. */
  int16x8_t cols_02_s16 = vcombine_s16(vaddhn_s32(tmp10, tmp3),
                                       vaddhn_s32(tmp12, tmp1));
  int16x8_t cols_13_s16 = vcombine_s16(vaddhn_s32(tmp11, tmp2),
                                       vaddhn_s32(tmp13, tmp0));
  int16x8_t cols_46_s16 = vcombine_s16(vsubhn_s32(tmp13, tmp0),
                                       vsubhn_s32(tmp11, tmp2));
  int16x8_t cols_57_s16 = vcombine_s16(vsubhn_s32(tmp12, tmp1),
                                       vsubhn_s32(tmp10, tmp3));
  /* Descale and narrow to 8-bit. */
  int8x8_t cols_02_s8 = vqrshrn_n_s16(cols_02_s16, DESCALE_P2 - 16);
  int8x8_t cols_13_s8 = vqrshrn_n_s16(cols_13_s16, DESCALE_P2 - 16);
  int8x8_t cols_46_s8 = vqrshrn_n_s16(cols_46_s16, DESCALE_P2 - 16);
  int8x8_t cols_57_s8 = vqrshrn_n_s16(cols_57_s16, DESCALE_P2 - 16);
  /* Clamp to range [0-255]. */
  uint8x8_t cols_02_u8 = vadd_u8(vreinterpret_u8_s8(cols_02_s8),
                                 vdup_n_u8(CENTERJSAMPLE));
  uint8x8_t cols_13_u8 = vadd_u8(vreinterpret_u8_s8(cols_13_s8),
                                 vdup_n_u8(CENTERJSAMPLE));
  uint8x8_t cols_46_u8 = vadd_u8(vreinterpret_u8_s8(cols_46_s8),
                                 vdup_n_u8(CENTERJSAMPLE));
  uint8x8_t cols_57_u8 = vadd_u8(vreinterpret_u8_s8(cols_57_s8),
                                 vdup_n_u8(CENTERJSAMPLE));

  /* Transpose 4x8 block and store to memory.  (Zipping adjacent columns
   * together allows us to store 16-bit elements.)
   */
  uint8x8x2_t cols_01_23 = vzip_u8(cols_02_u8, cols_13_u8);
  uint8x8x2_t cols_45_67 = vzip_u8(cols_46_u8, cols_57_u8);
  uint16x4x4_t cols_01_23_45_67 = { {
    vreinterpret_u16_u8(cols_01_23.val[0]),
    vreinterpret_u16_u8(cols_01_23.val[1]),
    vreinterpret_u16_u8(cols_45_67.val[0]),
    vreinterpret_u16_u8(cols_45_67.val[1])
  } };

  JSAMPROW outptr0 = output_buf[buf_offset + 0] + output_col;
  JSAMPROW outptr1 = output_buf[buf_offset + 1] + output_col;
  JSAMPROW outptr2 = output_buf[buf_offset + 2] + output_col;
  JSAMPROW outptr3 = output_buf[buf_offset + 3] + output_col;
  /* VST4 of 16-bit elements completes the transpose. */
  vst4_lane_u16((uint16_t *)outptr0, cols_01_23_45_67, 0);
  vst4_lane_u16((uint16_t *)outptr1, cols_01_23_45_67, 1);
  vst4_lane_u16((uint16_t *)outptr2, cols_01_23_45_67, 2);
  vst4_lane_u16((uint16_t *)outptr3, cols_01_23_45_67, 3);
}


/* Performs the second pass of the accurate inverse DCT on a 4x8 block
 * of coefficients.
 *
 * This "sparse" version assumes that the coefficient values (after the first
 * pass) in rows 4-7 are all 0.  This simplifies the IDCT calculation,
 * accelerating overall performance.
 */

static INLINE void jsimd_idct_islow_pass2_sparse(int16_t *workspace,
                                                 JSAMPARRAY output_buf,
                                                 JDIMENSION output_col,
                                                 unsigned buf_offset)
{
  /* Load constants for IDCT computation. */
#ifdef HAVE_VLD1_S16_X3
  const int16x4x3_t consts = vld1_s16_x3(jsimd_idct_islow_neon_consts);
#else
  const int16x4_t consts1 = vld1_s16(jsimd_idct_islow_neon_consts);
  const int16x4_t consts2 = vld1_s16(jsimd_idct_islow_neon_consts + 4);
  const int16x4_t consts3 = vld1_s16(jsimd_idct_islow_neon_consts + 8);
  const int16x4x3_t consts = { { consts1, consts2, consts3 } };
#endif

  /* Even part (z3 is all 0) */
  int16x4_t z2_s16 = vld1_s16(workspace + 2 * DCTSIZE / 2);

  int32x4_t tmp2 = vmull_lane_s16(z2_s16, consts.val[0], 1);
  int32x4_t tmp3 = vmull_lane_s16(z2_s16, consts.val[1], 2);

  z2_s16 = vld1_s16(workspace + 0 * DCTSIZE / 2);
  int32x4_t tmp0 = vshll_n_s16(z2_s16, CONST_BITS);
  int32x4_t tmp1 = vshll_n_s16(z2_s16, CONST_BITS);

  int32x4_t tmp10 = vaddq_s32(tmp0, tmp3);
  int32x4_t tmp13 = vsubq_s32(tmp0, tmp3);
  int32x4_t tmp11 = vaddq_s32(tmp1, tmp2);
  int32x4_t tmp12 = vsubq_s32(tmp1, tmp2);

  /* Odd part (tmp0 and tmp1 are both all 0) */
  int16x4_t tmp2_s16 = vld1_s16(workspace + 3 * DCTSIZE / 2);
  int16x4_t tmp3_s16 = vld1_s16(workspace + 1 * DCTSIZE / 2);

  int16x4_t z3_s16 = tmp2_s16;
  int16x4_t z4_s16 = tmp3_s16;

  int32x4_t z3 = vmull_lane_s16(z3_s16, consts.val[2], 3);
  z3 = vmlal_lane_s16(z3, z4_s16, consts.val[1], 3);
  int32x4_t z4 = vmull_lane_s16(z3_s16, consts.val[1], 3);
  z4 = vmlal_lane_s16(z4, z4_s16, consts.val[2], 0);

  tmp0 = vmlsl_lane_s16(z3, tmp3_s16, consts.val[0], 0);
  tmp1 = vmlsl_lane_s16(z4, tmp2_s16, consts.val[0], 2);
  tmp2 = vmlal_lane_s16(z3, tmp2_s16, consts.val[2], 2);
  tmp3 = vmlal_lane_s16(z4, tmp3_s16, consts.val[1], 0);

  /* Final output stage: descale and narrow to 16-bit. */
  int16x8_t cols_02_s16 = vcombine_s16(vaddhn_s32(tmp10, tmp3),
                                       vaddhn_s32(tmp12, tmp1));
  int16x8_t cols_13_s16 = vcombine_s16(vaddhn_s32(tmp11, tmp2),
                                       vaddhn_s32(tmp13, tmp0));
  int16x8_t cols_46_s16 = vcombine_s16(vsubhn_s32(tmp13, tmp0),
                                       vsubhn_s32(tmp11, tmp2));
  int16x8_t cols_57_s16 = vcombine_s16(vsubhn_s32(tmp12, tmp1),
                                       vsubhn_s32(tmp10, tmp3));
  /* Descale and narrow to 8-bit. */
  int8x8_t cols_02_s8 = vqrshrn_n_s16(cols_02_s16, DESCALE_P2 - 16);
  int8x8_t cols_13_s8 = vqrshrn_n_s16(cols_13_s16, DESCALE_P2 - 16);
  int8x8_t cols_46_s8 = vqrshrn_n_s16(cols_46_s16, DESCALE_P2 - 16);
  int8x8_t cols_57_s8 = vqrshrn_n_s16(cols_57_s16, DESCALE_P2 - 16);
  /* Clamp to range [0-255]. */
  uint8x8_t cols_02_u8 = vadd_u8(vreinterpret_u8_s8(cols_02_s8),
                                 vdup_n_u8(CENTERJSAMPLE));
  uint8x8_t cols_13_u8 = vadd_u8(vreinterpret_u8_s8(cols_13_s8),
                                 vdup_n_u8(CENTERJSAMPLE));
  uint8x8_t cols_46_u8 = vadd_u8(vreinterpret_u8_s8(cols_46_s8),
                                 vdup_n_u8(CENTERJSAMPLE));
  uint8x8_t cols_57_u8 = vadd_u8(vreinterpret_u8_s8(cols_57_s8),
                                 vdup_n_u8(CENTERJSAMPLE));

  /* Transpose 4x8 block and store to memory.  (Zipping adjacent columns
   * together allows us to store 16-bit elements.)
   */
  uint8x8x2_t cols_01_23 = vzip_u8(cols_02_u8, cols_13_u8);
  uint8x8x2_t cols_45_67 = vzip_u8(cols_46_u8, cols_57_u8);
  uint16x4x4_t cols_01_23_45_67 = { {
    vreinterpret_u16_u8(cols_01_23.val[0]),
    vreinterpret_u16_u8(cols_01_23.val[1]),
    vreinterpret_u16_u8(cols_45_67.val[0]),
    vreinterpret_u16_u8(cols_45_67.val[1])
  } };

  JSAMPROW outptr0 = output_buf[buf_offset + 0] + output_col;
  JSAMPROW outptr1 = output_buf[buf_offset + 1] + output_col;
  JSAMPROW outptr2 = output_buf[buf_offset + 2] + output_col;
  JSAMPROW outptr3 = output_buf[buf_offset + 3] + output_col;
  /* VST4 of 16-bit elements completes the transpose. */
  vst4_lane_u16((uint16_t *)outptr0, cols_01_23_45_67, 0);
  vst4_lane_u16((uint16_t *)outptr1, cols_01_23_45_67, 1);
  vst4_lane_u16((uint16_t *)outptr2, cols_01_23_45_67, 2);
  vst4_lane_u16((uint16_t *)outptr3, cols_01_23_45_67, 3);
}