summaryrefslogtreecommitdiff
path: root/services/inputflinger/reader/mapper/SensorInputMapper.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'services/inputflinger/reader/mapper/SensorInputMapper.cpp')
-rw-r--r--services/inputflinger/reader/mapper/SensorInputMapper.cpp421
1 files changed, 421 insertions, 0 deletions
diff --git a/services/inputflinger/reader/mapper/SensorInputMapper.cpp b/services/inputflinger/reader/mapper/SensorInputMapper.cpp
new file mode 100644
index 0000000000..7ac2dec895
--- /dev/null
+++ b/services/inputflinger/reader/mapper/SensorInputMapper.cpp
@@ -0,0 +1,421 @@
+/*
+ * Copyright (C) 2020 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include <locale>
+
+#include "../Macros.h"
+
+#include "SensorInputMapper.h"
+
+// Log detailed debug messages about each sensor event notification to the dispatcher.
+constexpr bool DEBUG_SENSOR_EVENT_DETAILS = false;
+
+namespace android {
+
+// Mask for the LSB 2nd, 3rd and fourth bits.
+constexpr int REPORTING_MODE_MASK = 0xE;
+constexpr int REPORTING_MODE_SHIFT = 1;
+constexpr float GRAVITY_MS2_UNIT = 9.80665f;
+constexpr float DEGREE_RADIAN_UNIT = 0.0174533f;
+
+/* Convert the sensor data from Linux to Android
+ * Linux accelerometer unit is per g, Android unit is m/s^2
+ * Linux gyroscope unit is degree/second, Android unit is radians/second
+ */
+static void convertFromLinuxToAndroid(std::vector<float>& values,
+ InputDeviceSensorType sensorType) {
+ for (size_t i = 0; i < values.size(); i++) {
+ switch (sensorType) {
+ case InputDeviceSensorType::ACCELEROMETER:
+ values[i] *= GRAVITY_MS2_UNIT;
+ break;
+ case InputDeviceSensorType::GYROSCOPE:
+ values[i] *= DEGREE_RADIAN_UNIT;
+ break;
+ default:
+ break;
+ }
+ }
+}
+
+SensorInputMapper::SensorInputMapper(InputDeviceContext& deviceContext)
+ : InputMapper(deviceContext) {}
+
+SensorInputMapper::~SensorInputMapper() {}
+
+uint32_t SensorInputMapper::getSources() {
+ return AINPUT_SOURCE_SENSOR;
+}
+
+template <typename T>
+bool SensorInputMapper::tryGetProperty(std::string keyName, T& outValue) {
+ const auto& config = getDeviceContext().getConfiguration();
+ return config.tryGetProperty(String8(keyName.c_str()), outValue);
+}
+
+void SensorInputMapper::parseSensorConfiguration(InputDeviceSensorType sensorType, int32_t absCode,
+ int32_t sensorDataIndex, const Axis& axis) {
+ auto it = mSensors.find(sensorType);
+ if (it == mSensors.end()) {
+ Sensor sensor = createSensor(sensorType, axis);
+ sensor.dataVec[sensorDataIndex] = absCode;
+ mSensors.emplace(sensorType, sensor);
+ } else {
+ it->second.dataVec[sensorDataIndex] = absCode;
+ }
+}
+
+void SensorInputMapper::populateDeviceInfo(InputDeviceInfo* info) {
+ InputMapper::populateDeviceInfo(info);
+
+ for (const auto& [sensorType, sensor] : mSensors) {
+ info->addSensorInfo(sensor.sensorInfo);
+ info->setHasSensor(true);
+ }
+}
+
+void SensorInputMapper::dump(std::string& dump) {
+ dump += INDENT2 "Sensor Input Mapper:\n";
+ dump += StringPrintf(INDENT3 " isDeviceEnabled %d\n", getDeviceContext().isDeviceEnabled());
+ dump += StringPrintf(INDENT3 " mHasHardwareTimestamp %d\n", mHasHardwareTimestamp);
+ dump += INDENT3 "Sensors:\n";
+ for (const auto& [sensorType, sensor] : mSensors) {
+ dump += StringPrintf(INDENT4 "%s\n", NamedEnum::string(sensorType).c_str());
+ dump += StringPrintf(INDENT5 "enabled: %d\n", sensor.enabled);
+ dump += StringPrintf(INDENT5 "samplingPeriod: %lld\n", sensor.samplingPeriod.count());
+ dump += StringPrintf(INDENT5 "maxBatchReportLatency: %lld\n",
+ sensor.maxBatchReportLatency.count());
+ dump += StringPrintf(INDENT5 "maxRange: %f\n", sensor.sensorInfo.maxRange);
+ dump += StringPrintf(INDENT5 "power: %f\n", sensor.sensorInfo.power);
+ for (ssize_t i = 0; i < SENSOR_VEC_LEN; i++) {
+ int32_t rawAxis = sensor.dataVec[i];
+ dump += StringPrintf(INDENT5 "[%zd]: rawAxis: %d \n", i, rawAxis);
+ const auto it = mAxes.find(rawAxis);
+ if (it != mAxes.end()) {
+ const Axis& axis = it->second;
+ dump += StringPrintf(INDENT5 " min=%0.5f, max=%0.5f, flat=%0.5f, fuzz=%0.5f,"
+ "resolution=%0.5f\n",
+ axis.min, axis.max, axis.flat, axis.fuzz, axis.resolution);
+ dump += StringPrintf(INDENT5 " scale=%0.5f, offset=%0.5f\n", axis.scale,
+ axis.offset);
+ dump += StringPrintf(INDENT5 " rawMin=%d, rawMax=%d, "
+ "rawFlat=%d, rawFuzz=%d, rawResolution=%d\n",
+ axis.rawAxisInfo.minValue, axis.rawAxisInfo.maxValue,
+ axis.rawAxisInfo.flat, axis.rawAxisInfo.fuzz,
+ axis.rawAxisInfo.resolution);
+ }
+ }
+ }
+}
+
+void SensorInputMapper::configure(nsecs_t when, const InputReaderConfiguration* config,
+ uint32_t changes) {
+ InputMapper::configure(when, config, changes);
+
+ if (!changes) { // first time only
+ mDeviceEnabled = true;
+ // Check if device has MSC_TIMESTAMP event.
+ mHasHardwareTimestamp = getDeviceContext().hasMscEvent(MSC_TIMESTAMP);
+ // Collect all axes.
+ for (int32_t abs = ABS_X; abs <= ABS_MAX; abs++) {
+ // axis must be claimed by sensor class device
+ if (!(getAbsAxisUsage(abs, getDeviceContext().getDeviceClasses())
+ .test(InputDeviceClass::SENSOR))) {
+ continue;
+ }
+ RawAbsoluteAxisInfo rawAxisInfo;
+ getAbsoluteAxisInfo(abs, &rawAxisInfo);
+ if (rawAxisInfo.valid) {
+ AxisInfo axisInfo;
+ // Axis doesn't need to be mapped, as sensor mapper doesn't generate any motion
+ // input events
+ axisInfo.mode = AxisInfo::MODE_NORMAL;
+ axisInfo.axis = -1;
+ // Check key layout map for sensor data mapping to axes
+ auto ret = getDeviceContext().mapSensor(abs);
+ if (ret.ok()) {
+ InputDeviceSensorType sensorType = (*ret).first;
+ int32_t sensorDataIndex = (*ret).second;
+ const Axis& axis = createAxis(axisInfo, rawAxisInfo);
+ parseSensorConfiguration(sensorType, abs, sensorDataIndex, axis);
+
+ mAxes.insert({abs, axis});
+ }
+ }
+ }
+ }
+}
+
+SensorInputMapper::Axis SensorInputMapper::createAxis(const AxisInfo& axisInfo,
+ const RawAbsoluteAxisInfo& rawAxisInfo) {
+ // Apply flat override.
+ int32_t rawFlat = axisInfo.flatOverride < 0 ? rawAxisInfo.flat : axisInfo.flatOverride;
+
+ float scale = std::numeric_limits<float>::signaling_NaN();
+ float offset = 0;
+
+ // resolution is 1 of sensor's unit. For accelerometer, it is G, for gyroscope,
+ // it is degree/s.
+ scale = 1.0f / rawAxisInfo.resolution;
+ offset = avg(rawAxisInfo.minValue, rawAxisInfo.maxValue) * -scale;
+
+ const float max = rawAxisInfo.maxValue / rawAxisInfo.resolution;
+ const float min = rawAxisInfo.minValue / rawAxisInfo.resolution;
+ const float flat = rawFlat * scale;
+ const float fuzz = rawAxisInfo.fuzz * scale;
+ const float resolution = rawAxisInfo.resolution;
+
+ // To eliminate noise while the Sensor is at rest, filter out small variations
+ // in axis values up front.
+ const float filter = fuzz ? fuzz : flat * 0.25f;
+ return Axis(rawAxisInfo, axisInfo, scale, offset, min, max, flat, fuzz, resolution, filter);
+}
+
+void SensorInputMapper::reset(nsecs_t when) {
+ // Recenter all axes.
+ for (std::pair<const int32_t, Axis>& pair : mAxes) {
+ Axis& axis = pair.second;
+ axis.resetValue();
+ }
+ mHardwareTimestamp = 0;
+ mPrevMscTime = 0;
+ InputMapper::reset(when);
+}
+
+SensorInputMapper::Sensor SensorInputMapper::createSensor(InputDeviceSensorType sensorType,
+ const Axis& axis) {
+ InputDeviceIdentifier identifier = getDeviceContext().getDeviceIdentifier();
+ // Sensor Id will be assigned to device Id to distinguish same sensor from multiple input
+ // devices, in such a way that the sensor Id will be same as input device Id.
+ // The sensorType is to distinguish different sensors within one device.
+ // One input device can only have 1 sensor for each sensor Type.
+ InputDeviceSensorInfo sensorInfo(identifier.name, std::to_string(identifier.vendor),
+ identifier.version, sensorType,
+ InputDeviceSensorAccuracy::ACCURACY_HIGH,
+ axis.max /* maxRange */, axis.scale /* resolution */,
+ 0.0f /* power */, 0 /* minDelay */,
+ 0 /* fifoReservedEventCount */, 0 /* fifoMaxEventCount */,
+ NamedEnum::string(sensorType), 0 /* maxDelay */, 0 /* flags */,
+ getDeviceId());
+
+ std::string prefix = "sensor." + NamedEnum::string(sensorType);
+ transform(prefix.begin(), prefix.end(), prefix.begin(), ::tolower);
+
+ int32_t reportingMode = 0;
+ if (!tryGetProperty(prefix + ".reportingMode", reportingMode)) {
+ sensorInfo.flags |= (reportingMode & REPORTING_MODE_MASK) << REPORTING_MODE_SHIFT;
+ }
+
+ tryGetProperty(prefix + ".maxDelay", sensorInfo.maxDelay);
+
+ tryGetProperty(prefix + ".minDelay", sensorInfo.minDelay);
+
+ tryGetProperty(prefix + ".power", sensorInfo.power);
+
+ tryGetProperty(prefix + ".fifoReservedEventCount", sensorInfo.fifoReservedEventCount);
+
+ tryGetProperty(prefix + ".fifoMaxEventCount", sensorInfo.fifoMaxEventCount);
+
+ return Sensor(sensorInfo);
+}
+
+void SensorInputMapper::processHardWareTimestamp(nsecs_t evTime, int32_t mscTime) {
+ // Since MSC_TIMESTAMP initial state is different from the system time, we
+ // calculate the difference between two MSC_TIMESTAMP events, and use that
+ // to calculate the system time that should be tagged on the event.
+ // if the first time MSC_TIMESTAMP, store it
+ // else calculate difference between previous and current MSC_TIMESTAMP
+ if (mPrevMscTime == 0) {
+ mHardwareTimestamp = evTime;
+ if (DEBUG_SENSOR_EVENT_DETAILS) {
+ ALOGD("Initialize hardware timestamp = %" PRId64, mHardwareTimestamp);
+ }
+ } else {
+ // Calculate the difference between current msc_timestamp and
+ // previous msc_timestamp, including when msc_timestamp wraps around.
+ uint32_t timeDiff = (mPrevMscTime > static_cast<uint32_t>(mscTime))
+ ? (UINT32_MAX - mPrevMscTime + static_cast<uint32_t>(mscTime + 1))
+ : (static_cast<uint32_t>(mscTime) - mPrevMscTime);
+
+ mHardwareTimestamp += timeDiff * 1000LL;
+ }
+ mPrevMscTime = static_cast<uint32_t>(mscTime);
+}
+
+void SensorInputMapper::process(const RawEvent* rawEvent) {
+ switch (rawEvent->type) {
+ case EV_ABS: {
+ auto it = mAxes.find(rawEvent->code);
+ if (it != mAxes.end()) {
+ Axis& axis = it->second;
+ axis.newValue = rawEvent->value * axis.scale + axis.offset;
+ }
+ break;
+ }
+
+ case EV_SYN:
+ switch (rawEvent->code) {
+ case SYN_REPORT:
+ for (std::pair<const int32_t, Axis>& pair : mAxes) {
+ Axis& axis = pair.second;
+ axis.currentValue = axis.newValue;
+ }
+ sync(rawEvent->when, false /*force*/);
+ break;
+ }
+ break;
+
+ case EV_MSC:
+ switch (rawEvent->code) {
+ case MSC_TIMESTAMP:
+ // hardware timestamp is nano seconds
+ processHardWareTimestamp(rawEvent->when, rawEvent->value);
+ break;
+ }
+ }
+}
+
+bool SensorInputMapper::setSensorEnabled(InputDeviceSensorType sensorType, bool enabled) {
+ auto it = mSensors.find(sensorType);
+ if (it == mSensors.end()) {
+ return false;
+ }
+
+ it->second.enabled = enabled;
+ if (!enabled) {
+ it->second.resetValue();
+ }
+
+ /* Currently we can't enable/disable sensors individually. Enabling any sensor will enable
+ * the device
+ */
+ mDeviceEnabled = false;
+ for (const auto& [sensorType, sensor] : mSensors) {
+ // If any sensor is on we will turn on the device.
+ if (sensor.enabled) {
+ mDeviceEnabled = true;
+ break;
+ }
+ }
+ return true;
+}
+
+void SensorInputMapper::flushSensor(InputDeviceSensorType sensorType) {
+ auto it = mSensors.find(sensorType);
+ if (it == mSensors.end()) {
+ return;
+ }
+ auto& sensor = it->second;
+ sensor.lastSampleTimeNs = 0;
+ for (size_t i = 0; i < SENSOR_VEC_LEN; i++) {
+ int32_t abs = sensor.dataVec[i];
+ auto itAxis = mAxes.find(abs);
+ if (itAxis != mAxes.end()) {
+ Axis& axis = itAxis->second;
+ axis.resetValue();
+ }
+ }
+}
+
+bool SensorInputMapper::enableSensor(InputDeviceSensorType sensorType,
+ std::chrono::microseconds samplingPeriod,
+ std::chrono::microseconds maxBatchReportLatency) {
+ if (DEBUG_SENSOR_EVENT_DETAILS) {
+ ALOGD("Enable Sensor %s samplingPeriod %lld maxBatchReportLatency %lld",
+ NamedEnum::string(sensorType).c_str(), samplingPeriod.count(),
+ maxBatchReportLatency.count());
+ }
+
+ if (!setSensorEnabled(sensorType, true /* enabled */)) {
+ return false;
+ }
+
+ // Enable device
+ if (mDeviceEnabled) {
+ getDeviceContext().enableDevice();
+ }
+
+ // We know the sensor exists now, update the sampling period and batch report latency.
+ auto it = mSensors.find(sensorType);
+ it->second.samplingPeriod =
+ std::chrono::duration_cast<std::chrono::nanoseconds>(samplingPeriod);
+ it->second.maxBatchReportLatency =
+ std::chrono::duration_cast<std::chrono::nanoseconds>(maxBatchReportLatency);
+ return true;
+}
+
+void SensorInputMapper::disableSensor(InputDeviceSensorType sensorType) {
+ if (DEBUG_SENSOR_EVENT_DETAILS) {
+ ALOGD("Disable Sensor %s", NamedEnum::string(sensorType).c_str());
+ }
+
+ if (!setSensorEnabled(sensorType, false /* enabled */)) {
+ return;
+ }
+
+ // Disable device
+ if (!mDeviceEnabled) {
+ mHardwareTimestamp = 0;
+ mPrevMscTime = 0;
+ getDeviceContext().disableDevice();
+ }
+}
+
+void SensorInputMapper::sync(nsecs_t when, bool force) {
+ for (auto& [sensorType, sensor] : mSensors) {
+ // Skip if sensor not enabled
+ if (!sensor.enabled) {
+ continue;
+ }
+ std::vector<float> values;
+ for (ssize_t i = 0; i < SENSOR_VEC_LEN; i++) {
+ int32_t abs = sensor.dataVec[i];
+ auto it = mAxes.find(abs);
+ if (it != mAxes.end()) {
+ const Axis& axis = it->second;
+ values.push_back(axis.currentValue);
+ }
+ }
+
+ nsecs_t timestamp = mHasHardwareTimestamp ? mHardwareTimestamp : when;
+ if (DEBUG_SENSOR_EVENT_DETAILS) {
+ ALOGD("Sensor %s timestamp %" PRIu64 " values [%f %f %f]",
+ NamedEnum::string(sensorType).c_str(), timestamp, values[0], values[1],
+ values[2]);
+ }
+ if (sensor.lastSampleTimeNs.has_value() &&
+ timestamp - sensor.lastSampleTimeNs.value() < sensor.samplingPeriod.count()) {
+ if (DEBUG_SENSOR_EVENT_DETAILS) {
+ ALOGD("Sensor %s Skip a sample.", NamedEnum::string(sensorType).c_str());
+ }
+ } else {
+ // Convert to Android unit
+ convertFromLinuxToAndroid(values, sensorType);
+ // Notify dispatcher for sensor event
+ NotifySensorArgs args(getContext()->getNextId(), when, getDeviceId(),
+ AINPUT_SOURCE_SENSOR, sensorType, sensor.sensorInfo.accuracy,
+ sensor.accuracy !=
+ sensor.sensorInfo.accuracy /* accuracyChanged */,
+ timestamp /* hwTimestamp */, values);
+
+ getListener()->notifySensor(&args);
+ sensor.lastSampleTimeNs = timestamp;
+ sensor.accuracy = sensor.sensorInfo.accuracy;
+ }
+ }
+}
+
+} // namespace android