summaryrefslogtreecommitdiff
path: root/libunwindstack/DwarfSection.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'libunwindstack/DwarfSection.cpp')
-rw-r--r--libunwindstack/DwarfSection.cpp807
1 files changed, 807 insertions, 0 deletions
diff --git a/libunwindstack/DwarfSection.cpp b/libunwindstack/DwarfSection.cpp
new file mode 100644
index 000000000..18bd490f9
--- /dev/null
+++ b/libunwindstack/DwarfSection.cpp
@@ -0,0 +1,807 @@
+/*
+ * Copyright (C) 2017 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include <stdint.h>
+
+#include <unwindstack/DwarfError.h>
+#include <unwindstack/DwarfLocation.h>
+#include <unwindstack/DwarfMemory.h>
+#include <unwindstack/DwarfSection.h>
+#include <unwindstack/DwarfStructs.h>
+#include <unwindstack/Log.h>
+#include <unwindstack/Memory.h>
+#include <unwindstack/Regs.h>
+
+#include "DwarfCfa.h"
+#include "DwarfDebugFrame.h"
+#include "DwarfEhFrame.h"
+#include "DwarfEncoding.h"
+#include "DwarfOp.h"
+#include "RegsInfo.h"
+
+namespace unwindstack {
+
+DwarfSection::DwarfSection(Memory* memory) : memory_(memory) {}
+
+bool DwarfSection::Step(uint64_t pc, Regs* regs, Memory* process_memory, bool* finished) {
+ // Lookup the pc in the cache.
+ auto it = loc_regs_.upper_bound(pc);
+ if (it == loc_regs_.end() || pc < it->second.pc_start) {
+ last_error_.code = DWARF_ERROR_NONE;
+ const DwarfFde* fde = GetFdeFromPc(pc);
+ if (fde == nullptr || fde->cie == nullptr) {
+ last_error_.code = DWARF_ERROR_ILLEGAL_STATE;
+ return false;
+ }
+
+ // Now get the location information for this pc.
+ dwarf_loc_regs_t loc_regs;
+ if (!GetCfaLocationInfo(pc, fde, &loc_regs)) {
+ return false;
+ }
+ loc_regs.cie = fde->cie;
+
+ // Store it in the cache.
+ it = loc_regs_.emplace(loc_regs.pc_end, std::move(loc_regs)).first;
+ }
+
+ // Now eval the actual registers.
+ return Eval(it->second.cie, process_memory, it->second, regs, finished);
+}
+
+template <typename AddressType>
+const DwarfCie* DwarfSectionImpl<AddressType>::GetCieFromOffset(uint64_t offset) {
+ auto cie_entry = cie_entries_.find(offset);
+ if (cie_entry != cie_entries_.end()) {
+ return &cie_entry->second;
+ }
+ DwarfCie* cie = &cie_entries_[offset];
+ memory_.set_data_offset(entries_offset_);
+ memory_.set_cur_offset(offset);
+ if (!FillInCieHeader(cie) || !FillInCie(cie)) {
+ // Erase the cached entry.
+ cie_entries_.erase(offset);
+ return nullptr;
+ }
+ return cie;
+}
+
+template <typename AddressType>
+bool DwarfSectionImpl<AddressType>::FillInCieHeader(DwarfCie* cie) {
+ cie->lsda_encoding = DW_EH_PE_omit;
+ uint32_t length32;
+ if (!memory_.ReadBytes(&length32, sizeof(length32))) {
+ last_error_.code = DWARF_ERROR_MEMORY_INVALID;
+ last_error_.address = memory_.cur_offset();
+ return false;
+ }
+ if (length32 == static_cast<uint32_t>(-1)) {
+ // 64 bit Cie
+ uint64_t length64;
+ if (!memory_.ReadBytes(&length64, sizeof(length64))) {
+ last_error_.code = DWARF_ERROR_MEMORY_INVALID;
+ last_error_.address = memory_.cur_offset();
+ return false;
+ }
+
+ cie->cfa_instructions_end = memory_.cur_offset() + length64;
+ cie->fde_address_encoding = DW_EH_PE_sdata8;
+
+ uint64_t cie_id;
+ if (!memory_.ReadBytes(&cie_id, sizeof(cie_id))) {
+ last_error_.code = DWARF_ERROR_MEMORY_INVALID;
+ last_error_.address = memory_.cur_offset();
+ return false;
+ }
+ if (cie_id != cie64_value_) {
+ // This is not a Cie, something has gone horribly wrong.
+ last_error_.code = DWARF_ERROR_ILLEGAL_VALUE;
+ return false;
+ }
+ } else {
+ // 32 bit Cie
+ cie->cfa_instructions_end = memory_.cur_offset() + length32;
+ cie->fde_address_encoding = DW_EH_PE_sdata4;
+
+ uint32_t cie_id;
+ if (!memory_.ReadBytes(&cie_id, sizeof(cie_id))) {
+ last_error_.code = DWARF_ERROR_MEMORY_INVALID;
+ last_error_.address = memory_.cur_offset();
+ return false;
+ }
+ if (cie_id != cie32_value_) {
+ // This is not a Cie, something has gone horribly wrong.
+ last_error_.code = DWARF_ERROR_ILLEGAL_VALUE;
+ return false;
+ }
+ }
+ return true;
+}
+
+template <typename AddressType>
+bool DwarfSectionImpl<AddressType>::FillInCie(DwarfCie* cie) {
+ if (!memory_.ReadBytes(&cie->version, sizeof(cie->version))) {
+ last_error_.code = DWARF_ERROR_MEMORY_INVALID;
+ last_error_.address = memory_.cur_offset();
+ return false;
+ }
+
+ if (cie->version != 1 && cie->version != 3 && cie->version != 4 && cie->version != 5) {
+ // Unrecognized version.
+ last_error_.code = DWARF_ERROR_UNSUPPORTED_VERSION;
+ return false;
+ }
+
+ // Read the augmentation string.
+ char aug_value;
+ do {
+ if (!memory_.ReadBytes(&aug_value, 1)) {
+ last_error_.code = DWARF_ERROR_MEMORY_INVALID;
+ last_error_.address = memory_.cur_offset();
+ return false;
+ }
+ cie->augmentation_string.push_back(aug_value);
+ } while (aug_value != '\0');
+
+ if (cie->version == 4 || cie->version == 5) {
+ // Skip the Address Size field since we only use it for validation.
+ memory_.set_cur_offset(memory_.cur_offset() + 1);
+
+ // Segment Size
+ if (!memory_.ReadBytes(&cie->segment_size, 1)) {
+ last_error_.code = DWARF_ERROR_MEMORY_INVALID;
+ last_error_.address = memory_.cur_offset();
+ return false;
+ }
+ }
+
+ // Code Alignment Factor
+ if (!memory_.ReadULEB128(&cie->code_alignment_factor)) {
+ last_error_.code = DWARF_ERROR_MEMORY_INVALID;
+ last_error_.address = memory_.cur_offset();
+ return false;
+ }
+
+ // Data Alignment Factor
+ if (!memory_.ReadSLEB128(&cie->data_alignment_factor)) {
+ last_error_.code = DWARF_ERROR_MEMORY_INVALID;
+ last_error_.address = memory_.cur_offset();
+ return false;
+ }
+
+ if (cie->version == 1) {
+ // Return Address is a single byte.
+ uint8_t return_address_register;
+ if (!memory_.ReadBytes(&return_address_register, 1)) {
+ last_error_.code = DWARF_ERROR_MEMORY_INVALID;
+ last_error_.address = memory_.cur_offset();
+ return false;
+ }
+ cie->return_address_register = return_address_register;
+ } else if (!memory_.ReadULEB128(&cie->return_address_register)) {
+ last_error_.code = DWARF_ERROR_MEMORY_INVALID;
+ last_error_.address = memory_.cur_offset();
+ return false;
+ }
+
+ if (cie->augmentation_string[0] != 'z') {
+ cie->cfa_instructions_offset = memory_.cur_offset();
+ return true;
+ }
+
+ uint64_t aug_length;
+ if (!memory_.ReadULEB128(&aug_length)) {
+ last_error_.code = DWARF_ERROR_MEMORY_INVALID;
+ last_error_.address = memory_.cur_offset();
+ return false;
+ }
+ cie->cfa_instructions_offset = memory_.cur_offset() + aug_length;
+
+ for (size_t i = 1; i < cie->augmentation_string.size(); i++) {
+ switch (cie->augmentation_string[i]) {
+ case 'L':
+ if (!memory_.ReadBytes(&cie->lsda_encoding, 1)) {
+ last_error_.code = DWARF_ERROR_MEMORY_INVALID;
+ last_error_.address = memory_.cur_offset();
+ return false;
+ }
+ break;
+ case 'P': {
+ uint8_t encoding;
+ if (!memory_.ReadBytes(&encoding, 1)) {
+ last_error_.code = DWARF_ERROR_MEMORY_INVALID;
+ last_error_.address = memory_.cur_offset();
+ return false;
+ }
+ memory_.set_pc_offset(pc_offset_);
+ if (!memory_.ReadEncodedValue<AddressType>(encoding, &cie->personality_handler)) {
+ last_error_.code = DWARF_ERROR_MEMORY_INVALID;
+ last_error_.address = memory_.cur_offset();
+ return false;
+ }
+ } break;
+ case 'R':
+ if (!memory_.ReadBytes(&cie->fde_address_encoding, 1)) {
+ last_error_.code = DWARF_ERROR_MEMORY_INVALID;
+ last_error_.address = memory_.cur_offset();
+ return false;
+ }
+ break;
+ }
+ }
+ return true;
+}
+
+template <typename AddressType>
+const DwarfFde* DwarfSectionImpl<AddressType>::GetFdeFromOffset(uint64_t offset) {
+ auto fde_entry = fde_entries_.find(offset);
+ if (fde_entry != fde_entries_.end()) {
+ return &fde_entry->second;
+ }
+ DwarfFde* fde = &fde_entries_[offset];
+ memory_.set_data_offset(entries_offset_);
+ memory_.set_cur_offset(offset);
+ if (!FillInFdeHeader(fde) || !FillInFde(fde)) {
+ fde_entries_.erase(offset);
+ return nullptr;
+ }
+ return fde;
+}
+
+template <typename AddressType>
+bool DwarfSectionImpl<AddressType>::FillInFdeHeader(DwarfFde* fde) {
+ uint32_t length32;
+ if (!memory_.ReadBytes(&length32, sizeof(length32))) {
+ last_error_.code = DWARF_ERROR_MEMORY_INVALID;
+ last_error_.address = memory_.cur_offset();
+ return false;
+ }
+
+ if (length32 == static_cast<uint32_t>(-1)) {
+ // 64 bit Fde.
+ uint64_t length64;
+ if (!memory_.ReadBytes(&length64, sizeof(length64))) {
+ last_error_.code = DWARF_ERROR_MEMORY_INVALID;
+ last_error_.address = memory_.cur_offset();
+ return false;
+ }
+ fde->cfa_instructions_end = memory_.cur_offset() + length64;
+
+ uint64_t value64;
+ if (!memory_.ReadBytes(&value64, sizeof(value64))) {
+ last_error_.code = DWARF_ERROR_MEMORY_INVALID;
+ last_error_.address = memory_.cur_offset();
+ return false;
+ }
+ if (value64 == cie64_value_) {
+ // This is a Cie, this means something has gone wrong.
+ last_error_.code = DWARF_ERROR_ILLEGAL_VALUE;
+ return false;
+ }
+
+ // Get the Cie pointer, which is necessary to properly read the rest of
+ // of the Fde information.
+ fde->cie_offset = GetCieOffsetFromFde64(value64);
+ } else {
+ // 32 bit Fde.
+ fde->cfa_instructions_end = memory_.cur_offset() + length32;
+
+ uint32_t value32;
+ if (!memory_.ReadBytes(&value32, sizeof(value32))) {
+ last_error_.code = DWARF_ERROR_MEMORY_INVALID;
+ last_error_.address = memory_.cur_offset();
+ return false;
+ }
+ if (value32 == cie32_value_) {
+ // This is a Cie, this means something has gone wrong.
+ last_error_.code = DWARF_ERROR_ILLEGAL_VALUE;
+ return false;
+ }
+
+ // Get the Cie pointer, which is necessary to properly read the rest of
+ // of the Fde information.
+ fde->cie_offset = GetCieOffsetFromFde32(value32);
+ }
+ return true;
+}
+
+template <typename AddressType>
+bool DwarfSectionImpl<AddressType>::FillInFde(DwarfFde* fde) {
+ uint64_t cur_offset = memory_.cur_offset();
+
+ const DwarfCie* cie = GetCieFromOffset(fde->cie_offset);
+ if (cie == nullptr) {
+ return false;
+ }
+ fde->cie = cie;
+
+ if (cie->segment_size != 0) {
+ // Skip over the segment selector for now.
+ cur_offset += cie->segment_size;
+ }
+ memory_.set_cur_offset(cur_offset);
+
+ // The load bias only applies to the start.
+ memory_.set_pc_offset(section_bias_);
+ bool valid = memory_.ReadEncodedValue<AddressType>(cie->fde_address_encoding, &fde->pc_start);
+ fde->pc_start = AdjustPcFromFde(fde->pc_start);
+
+ memory_.set_pc_offset(0);
+ if (!valid || !memory_.ReadEncodedValue<AddressType>(cie->fde_address_encoding, &fde->pc_end)) {
+ last_error_.code = DWARF_ERROR_MEMORY_INVALID;
+ last_error_.address = memory_.cur_offset();
+ return false;
+ }
+ fde->pc_end += fde->pc_start;
+
+ if (cie->augmentation_string.size() > 0 && cie->augmentation_string[0] == 'z') {
+ // Augmentation Size
+ uint64_t aug_length;
+ if (!memory_.ReadULEB128(&aug_length)) {
+ last_error_.code = DWARF_ERROR_MEMORY_INVALID;
+ last_error_.address = memory_.cur_offset();
+ return false;
+ }
+ uint64_t cur_offset = memory_.cur_offset();
+
+ memory_.set_pc_offset(pc_offset_);
+ if (!memory_.ReadEncodedValue<AddressType>(cie->lsda_encoding, &fde->lsda_address)) {
+ last_error_.code = DWARF_ERROR_MEMORY_INVALID;
+ last_error_.address = memory_.cur_offset();
+ return false;
+ }
+
+ // Set our position to after all of the augmentation data.
+ memory_.set_cur_offset(cur_offset + aug_length);
+ }
+ fde->cfa_instructions_offset = memory_.cur_offset();
+
+ return true;
+}
+
+template <typename AddressType>
+bool DwarfSectionImpl<AddressType>::EvalExpression(const DwarfLocation& loc, Memory* regular_memory,
+ AddressType* value,
+ RegsInfo<AddressType>* regs_info,
+ bool* is_dex_pc) {
+ DwarfOp<AddressType> op(&memory_, regular_memory);
+ op.set_regs_info(regs_info);
+
+ // Need to evaluate the op data.
+ uint64_t end = loc.values[1];
+ uint64_t start = end - loc.values[0];
+ if (!op.Eval(start, end)) {
+ last_error_ = op.last_error();
+ return false;
+ }
+ if (op.StackSize() == 0) {
+ last_error_.code = DWARF_ERROR_ILLEGAL_STATE;
+ return false;
+ }
+ // We don't support an expression that evaluates to a register number.
+ if (op.is_register()) {
+ last_error_.code = DWARF_ERROR_NOT_IMPLEMENTED;
+ return false;
+ }
+ *value = op.StackAt(0);
+ if (is_dex_pc != nullptr && op.dex_pc_set()) {
+ *is_dex_pc = true;
+ }
+ return true;
+}
+
+template <typename AddressType>
+struct EvalInfo {
+ const dwarf_loc_regs_t* loc_regs;
+ const DwarfCie* cie;
+ Memory* regular_memory;
+ AddressType cfa;
+ bool return_address_undefined = false;
+ RegsInfo<AddressType> regs_info;
+};
+
+template <typename AddressType>
+bool DwarfSectionImpl<AddressType>::EvalRegister(const DwarfLocation* loc, uint32_t reg,
+ AddressType* reg_ptr, void* info) {
+ EvalInfo<AddressType>* eval_info = reinterpret_cast<EvalInfo<AddressType>*>(info);
+ Memory* regular_memory = eval_info->regular_memory;
+ switch (loc->type) {
+ case DWARF_LOCATION_OFFSET:
+ if (!regular_memory->ReadFully(eval_info->cfa + loc->values[0], reg_ptr, sizeof(AddressType))) {
+ last_error_.code = DWARF_ERROR_MEMORY_INVALID;
+ last_error_.address = eval_info->cfa + loc->values[0];
+ return false;
+ }
+ break;
+ case DWARF_LOCATION_VAL_OFFSET:
+ *reg_ptr = eval_info->cfa + loc->values[0];
+ break;
+ case DWARF_LOCATION_REGISTER: {
+ uint32_t cur_reg = loc->values[0];
+ if (cur_reg >= eval_info->regs_info.Total()) {
+ last_error_.code = DWARF_ERROR_ILLEGAL_VALUE;
+ return false;
+ }
+ *reg_ptr = eval_info->regs_info.Get(cur_reg) + loc->values[1];
+ break;
+ }
+ case DWARF_LOCATION_EXPRESSION:
+ case DWARF_LOCATION_VAL_EXPRESSION: {
+ AddressType value;
+ bool is_dex_pc = false;
+ if (!EvalExpression(*loc, regular_memory, &value, &eval_info->regs_info, &is_dex_pc)) {
+ return false;
+ }
+ if (loc->type == DWARF_LOCATION_EXPRESSION) {
+ if (!regular_memory->ReadFully(value, reg_ptr, sizeof(AddressType))) {
+ last_error_.code = DWARF_ERROR_MEMORY_INVALID;
+ last_error_.address = value;
+ return false;
+ }
+ } else {
+ *reg_ptr = value;
+ if (is_dex_pc) {
+ eval_info->regs_info.regs->set_dex_pc(value);
+ }
+ }
+ break;
+ }
+ case DWARF_LOCATION_UNDEFINED:
+ if (reg == eval_info->cie->return_address_register) {
+ eval_info->return_address_undefined = true;
+ }
+ break;
+ default:
+ break;
+ }
+
+ return true;
+}
+
+template <typename AddressType>
+bool DwarfSectionImpl<AddressType>::Eval(const DwarfCie* cie, Memory* regular_memory,
+ const dwarf_loc_regs_t& loc_regs, Regs* regs,
+ bool* finished) {
+ RegsImpl<AddressType>* cur_regs = reinterpret_cast<RegsImpl<AddressType>*>(regs);
+ if (cie->return_address_register >= cur_regs->total_regs()) {
+ last_error_.code = DWARF_ERROR_ILLEGAL_VALUE;
+ return false;
+ }
+
+ // Get the cfa value;
+ auto cfa_entry = loc_regs.find(CFA_REG);
+ if (cfa_entry == loc_regs.end()) {
+ last_error_.code = DWARF_ERROR_CFA_NOT_DEFINED;
+ return false;
+ }
+
+ // Always set the dex pc to zero when evaluating.
+ cur_regs->set_dex_pc(0);
+
+ EvalInfo<AddressType> eval_info{.loc_regs = &loc_regs,
+ .cie = cie,
+ .regular_memory = regular_memory,
+ .regs_info = RegsInfo<AddressType>(cur_regs)};
+ const DwarfLocation* loc = &cfa_entry->second;
+ // Only a few location types are valid for the cfa.
+ switch (loc->type) {
+ case DWARF_LOCATION_REGISTER:
+ if (loc->values[0] >= cur_regs->total_regs()) {
+ last_error_.code = DWARF_ERROR_ILLEGAL_VALUE;
+ return false;
+ }
+ eval_info.cfa = (*cur_regs)[loc->values[0]];
+ eval_info.cfa += loc->values[1];
+ break;
+ case DWARF_LOCATION_VAL_EXPRESSION: {
+ AddressType value;
+ if (!EvalExpression(*loc, regular_memory, &value, &eval_info.regs_info, nullptr)) {
+ return false;
+ }
+ // There is only one type of valid expression for CFA evaluation.
+ eval_info.cfa = value;
+ break;
+ }
+ default:
+ last_error_.code = DWARF_ERROR_ILLEGAL_VALUE;
+ return false;
+ }
+
+ for (const auto& entry : loc_regs) {
+ uint32_t reg = entry.first;
+ // Already handled the CFA register.
+ if (reg == CFA_REG) continue;
+
+ AddressType* reg_ptr;
+ if (reg >= cur_regs->total_regs()) {
+ // Skip this unknown register.
+ continue;
+ }
+
+ reg_ptr = eval_info.regs_info.Save(reg);
+ if (!EvalRegister(&entry.second, reg, reg_ptr, &eval_info)) {
+ return false;
+ }
+ }
+
+ // Find the return address location.
+ if (eval_info.return_address_undefined) {
+ cur_regs->set_pc(0);
+ } else {
+ cur_regs->set_pc((*cur_regs)[cie->return_address_register]);
+ }
+
+ // If the pc was set to zero, consider this the final frame.
+ *finished = (cur_regs->pc() == 0) ? true : false;
+
+ cur_regs->set_sp(eval_info.cfa);
+
+ return true;
+}
+
+template <typename AddressType>
+bool DwarfSectionImpl<AddressType>::GetCfaLocationInfo(uint64_t pc, const DwarfFde* fde,
+ dwarf_loc_regs_t* loc_regs) {
+ DwarfCfa<AddressType> cfa(&memory_, fde);
+
+ // Look for the cached copy of the cie data.
+ auto reg_entry = cie_loc_regs_.find(fde->cie_offset);
+ if (reg_entry == cie_loc_regs_.end()) {
+ if (!cfa.GetLocationInfo(pc, fde->cie->cfa_instructions_offset, fde->cie->cfa_instructions_end,
+ loc_regs)) {
+ last_error_ = cfa.last_error();
+ return false;
+ }
+ cie_loc_regs_[fde->cie_offset] = *loc_regs;
+ }
+ cfa.set_cie_loc_regs(&cie_loc_regs_[fde->cie_offset]);
+ if (!cfa.GetLocationInfo(pc, fde->cfa_instructions_offset, fde->cfa_instructions_end, loc_regs)) {
+ last_error_ = cfa.last_error();
+ return false;
+ }
+ return true;
+}
+
+template <typename AddressType>
+bool DwarfSectionImpl<AddressType>::Log(uint8_t indent, uint64_t pc, const DwarfFde* fde) {
+ DwarfCfa<AddressType> cfa(&memory_, fde);
+
+ // Always print the cie information.
+ const DwarfCie* cie = fde->cie;
+ if (!cfa.Log(indent, pc, cie->cfa_instructions_offset, cie->cfa_instructions_end)) {
+ last_error_ = cfa.last_error();
+ return false;
+ }
+ if (!cfa.Log(indent, pc, fde->cfa_instructions_offset, fde->cfa_instructions_end)) {
+ last_error_ = cfa.last_error();
+ return false;
+ }
+ return true;
+}
+
+template <typename AddressType>
+bool DwarfSectionImpl<AddressType>::Init(uint64_t offset, uint64_t size, int64_t section_bias) {
+ section_bias_ = section_bias;
+ entries_offset_ = offset;
+ next_entries_offset_ = offset;
+ entries_end_ = offset + size;
+
+ memory_.clear_func_offset();
+ memory_.clear_text_offset();
+ memory_.set_cur_offset(offset);
+ pc_offset_ = offset;
+
+ return true;
+}
+
+// Create a cached version of the fde information such that it is a std::map
+// that is indexed by end pc and contains a pair that represents the start pc
+// followed by the fde object. The fde pointers are owned by fde_entries_
+// and not by the map object.
+// It is possible for an fde to be represented by multiple entries in
+// the map. This can happen if the the start pc and end pc overlap already
+// existing entries. For example, if there is already an entry of 0x400, 0x200,
+// and an fde has a start pc of 0x100 and end pc of 0x500, two new entries
+// will be added: 0x200, 0x100 and 0x500, 0x400.
+template <typename AddressType>
+void DwarfSectionImpl<AddressType>::InsertFde(const DwarfFde* fde) {
+ uint64_t start = fde->pc_start;
+ uint64_t end = fde->pc_end;
+ auto it = fdes_.upper_bound(start);
+ while (it != fdes_.end() && start < end && it->second.first < end) {
+ if (start < it->second.first) {
+ fdes_[it->second.first] = std::make_pair(start, fde);
+ }
+ start = it->first;
+ ++it;
+ }
+ if (start < end) {
+ fdes_[end] = std::make_pair(start, fde);
+ }
+}
+
+template <typename AddressType>
+bool DwarfSectionImpl<AddressType>::GetNextCieOrFde(const DwarfFde** fde_entry) {
+ uint64_t start_offset = next_entries_offset_;
+
+ memory_.set_data_offset(entries_offset_);
+ memory_.set_cur_offset(next_entries_offset_);
+ uint32_t value32;
+ if (!memory_.ReadBytes(&value32, sizeof(value32))) {
+ last_error_.code = DWARF_ERROR_MEMORY_INVALID;
+ last_error_.address = memory_.cur_offset();
+ return false;
+ }
+
+ uint64_t cie_offset;
+ uint8_t cie_fde_encoding;
+ bool entry_is_cie = false;
+ if (value32 == static_cast<uint32_t>(-1)) {
+ // 64 bit entry.
+ uint64_t value64;
+ if (!memory_.ReadBytes(&value64, sizeof(value64))) {
+ last_error_.code = DWARF_ERROR_MEMORY_INVALID;
+ last_error_.address = memory_.cur_offset();
+ return false;
+ }
+
+ next_entries_offset_ = memory_.cur_offset() + value64;
+ // Read the Cie Id of a Cie or the pointer of the Fde.
+ if (!memory_.ReadBytes(&value64, sizeof(value64))) {
+ last_error_.code = DWARF_ERROR_MEMORY_INVALID;
+ last_error_.address = memory_.cur_offset();
+ return false;
+ }
+
+ if (value64 == cie64_value_) {
+ entry_is_cie = true;
+ cie_fde_encoding = DW_EH_PE_sdata8;
+ } else {
+ cie_offset = GetCieOffsetFromFde64(value64);
+ }
+ } else {
+ next_entries_offset_ = memory_.cur_offset() + value32;
+
+ // 32 bit Cie
+ if (!memory_.ReadBytes(&value32, sizeof(value32))) {
+ last_error_.code = DWARF_ERROR_MEMORY_INVALID;
+ last_error_.address = memory_.cur_offset();
+ return false;
+ }
+
+ if (value32 == cie32_value_) {
+ entry_is_cie = true;
+ cie_fde_encoding = DW_EH_PE_sdata4;
+ } else {
+ cie_offset = GetCieOffsetFromFde32(value32);
+ }
+ }
+
+ if (entry_is_cie) {
+ auto entry = cie_entries_.find(start_offset);
+ if (entry == cie_entries_.end()) {
+ DwarfCie* cie = &cie_entries_[start_offset];
+ cie->lsda_encoding = DW_EH_PE_omit;
+ cie->cfa_instructions_end = next_entries_offset_;
+ cie->fde_address_encoding = cie_fde_encoding;
+
+ if (!FillInCie(cie)) {
+ cie_entries_.erase(start_offset);
+ return false;
+ }
+ }
+ *fde_entry = nullptr;
+ } else {
+ auto entry = fde_entries_.find(start_offset);
+ if (entry != fde_entries_.end()) {
+ *fde_entry = &entry->second;
+ } else {
+ DwarfFde* fde = &fde_entries_[start_offset];
+ fde->cfa_instructions_end = next_entries_offset_;
+ fde->cie_offset = cie_offset;
+
+ if (!FillInFde(fde)) {
+ fde_entries_.erase(start_offset);
+ return false;
+ }
+ *fde_entry = fde;
+ }
+ }
+ return true;
+}
+
+template <typename AddressType>
+void DwarfSectionImpl<AddressType>::GetFdes(std::vector<const DwarfFde*>* fdes) {
+ // Loop through the already cached entries.
+ uint64_t entry_offset = entries_offset_;
+ while (entry_offset < next_entries_offset_) {
+ auto cie_it = cie_entries_.find(entry_offset);
+ if (cie_it != cie_entries_.end()) {
+ entry_offset = cie_it->second.cfa_instructions_end;
+ } else {
+ auto fde_it = fde_entries_.find(entry_offset);
+ if (fde_it == fde_entries_.end()) {
+ // No fde or cie at this entry, should not be possible.
+ return;
+ }
+ entry_offset = fde_it->second.cfa_instructions_end;
+ fdes->push_back(&fde_it->second);
+ }
+ }
+
+ while (next_entries_offset_ < entries_end_) {
+ const DwarfFde* fde;
+ if (!GetNextCieOrFde(&fde)) {
+ break;
+ }
+ if (fde != nullptr) {
+ InsertFde(fde);
+ fdes->push_back(fde);
+ }
+
+ if (next_entries_offset_ < memory_.cur_offset()) {
+ // Simply consider the processing done in this case.
+ break;
+ }
+ }
+}
+
+template <typename AddressType>
+const DwarfFde* DwarfSectionImpl<AddressType>::GetFdeFromPc(uint64_t pc) {
+ // Search in the list of fdes we already have.
+ auto it = fdes_.upper_bound(pc);
+ if (it != fdes_.end()) {
+ if (pc >= it->second.first) {
+ return it->second.second;
+ }
+ }
+
+ // The section might have overlapping pcs in fdes, so it is necessary
+ // to do a linear search of the fdes by pc. As fdes are read, a cached
+ // search map is created.
+ while (next_entries_offset_ < entries_end_) {
+ const DwarfFde* fde;
+ if (!GetNextCieOrFde(&fde)) {
+ return nullptr;
+ }
+ if (fde != nullptr) {
+ InsertFde(fde);
+ if (pc >= fde->pc_start && pc < fde->pc_end) {
+ return fde;
+ }
+ }
+
+ if (next_entries_offset_ < memory_.cur_offset()) {
+ // Simply consider the processing done in this case.
+ break;
+ }
+ }
+ return nullptr;
+}
+
+// Explicitly instantiate DwarfSectionImpl
+template class DwarfSectionImpl<uint32_t>;
+template class DwarfSectionImpl<uint64_t>;
+
+// Explicitly instantiate DwarfDebugFrame
+template class DwarfDebugFrame<uint32_t>;
+template class DwarfDebugFrame<uint64_t>;
+
+// Explicitly instantiate DwarfEhFrame
+template class DwarfEhFrame<uint32_t>;
+template class DwarfEhFrame<uint64_t>;
+
+} // namespace unwindstack