summaryrefslogtreecommitdiff
path: root/simpleperf/RecordReadThread.cpp
blob: 2d034bc16acd4a7606490e070a335e6addca74ea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
/*
 * Copyright (C) 2018 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "RecordReadThread.h"

#include <sys/resource.h>
#include <unistd.h>

#include <algorithm>
#include <unordered_map>

#include "environment.h"
#include "event_type.h"
#include "record.h"
#include "utils.h"

namespace simpleperf {

static constexpr size_t kDefaultLowBufferLevel = 10 * kMegabyte;
static constexpr size_t kDefaultCriticalBufferLevel = 5 * kMegabyte;

RecordBuffer::RecordBuffer(size_t buffer_size)
    : read_head_(0), write_head_(0), buffer_size_(buffer_size), buffer_(new char[buffer_size]) {}

size_t RecordBuffer::GetFreeSize() const {
  size_t write_head = write_head_.load(std::memory_order_relaxed);
  size_t read_head = read_head_.load(std::memory_order_relaxed);
  size_t write_tail = read_head > 0 ? read_head - 1 : buffer_size_ - 1;
  if (write_head <= write_tail) {
    return write_tail - write_head;
  }
  return buffer_size_ - write_head + write_tail;
}

char* RecordBuffer::AllocWriteSpace(size_t record_size) {
  size_t write_head = write_head_.load(std::memory_order_relaxed);
  size_t read_head = read_head_.load(std::memory_order_acquire);
  size_t write_tail = read_head > 0 ? read_head - 1 : buffer_size_ - 1;
  cur_write_record_size_ = record_size;
  if (write_head < write_tail) {
    if (write_head + record_size > write_tail) {
      return nullptr;
    }
  } else if (write_head + record_size > buffer_size_) {
    // Not enough space at the end of the buffer, need to wrap to the start of the buffer.
    if (write_tail < record_size) {
      return nullptr;
    }
    if (buffer_size_ - write_head >= sizeof(perf_event_header)) {
      // Set the size field in perf_event_header to 0. So GetCurrentRecord() can wrap to the start
      // of the buffer when size is 0.
      memset(buffer_.get() + write_head, 0, sizeof(perf_event_header));
    }
    cur_write_record_size_ += buffer_size_ - write_head;
    write_head = 0;
  }
  return buffer_.get() + write_head;
}

void RecordBuffer::FinishWrite() {
  size_t write_head = write_head_.load(std::memory_order_relaxed);
  write_head = (write_head + cur_write_record_size_) % buffer_size_;
  write_head_.store(write_head, std::memory_order_release);
}

char* RecordBuffer::GetCurrentRecord() {
  size_t write_head = write_head_.load(std::memory_order_acquire);
  size_t read_head = read_head_.load(std::memory_order_relaxed);
  if (read_head == write_head) {
    return nullptr;
  }
  perf_event_header header;
  if (read_head > write_head) {
    if (buffer_size_ - read_head < sizeof(header) ||
        (memcpy(&header, buffer_.get() + read_head, sizeof(header)) && header.size == 0)) {
      // Need to wrap to the start of the buffer.
      cur_read_record_size_ += buffer_size_ - read_head;
      read_head = 0;
      memcpy(&header, buffer_.get(), sizeof(header));
    }
  } else {
    memcpy(&header, buffer_.get() + read_head, sizeof(header));
  }
  cur_read_record_size_ += header.size;
  return buffer_.get() + read_head;
}

void RecordBuffer::MoveToNextRecord() {
  size_t read_head = read_head_.load(std::memory_order_relaxed);
  read_head = (read_head + cur_read_record_size_) % buffer_size_;
  read_head_.store(read_head, std::memory_order_release);
  cur_read_record_size_ = 0;
}

RecordParser::RecordParser(const perf_event_attr& attr)
    : sample_type_(attr.sample_type),
      read_format_(attr.read_format),
      sample_regs_count_(__builtin_popcountll(attr.sample_regs_user)) {
  size_t pos = sizeof(perf_event_header);
  uint64_t mask = PERF_SAMPLE_IDENTIFIER | PERF_SAMPLE_IP;
  pos += __builtin_popcountll(sample_type_ & mask) * sizeof(uint64_t);
  if (sample_type_ & PERF_SAMPLE_TID) {
    pid_pos_in_sample_records_ = pos;
    pos += sizeof(uint64_t);
  }
  if (sample_type_ & PERF_SAMPLE_TIME) {
    time_pos_in_sample_records_ = pos;
    pos += sizeof(uint64_t);
  }
  mask = PERF_SAMPLE_ADDR | PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | PERF_SAMPLE_CPU |
         PERF_SAMPLE_PERIOD;
  pos += __builtin_popcountll(sample_type_ & mask) * sizeof(uint64_t);
  read_pos_in_sample_records_ = pos;
  if ((sample_type_ & PERF_SAMPLE_TIME) && attr.sample_id_all) {
    mask = PERF_SAMPLE_IDENTIFIER | PERF_SAMPLE_CPU | PERF_SAMPLE_STREAM_ID | PERF_SAMPLE_ID;
    time_rpos_in_non_sample_records_ =
        (__builtin_popcountll(sample_type_ & mask) + 1) * sizeof(uint64_t);
  }
}

size_t RecordParser::GetTimePos(const perf_event_header& header) const {
  if (header.type == PERF_RECORD_SAMPLE) {
    return time_pos_in_sample_records_;
  }
  if (time_rpos_in_non_sample_records_ != 0u &&
      time_rpos_in_non_sample_records_ < header.size - sizeof(perf_event_header)) {
    return header.size - time_rpos_in_non_sample_records_;
  }
  return 0;
}

size_t RecordParser::GetStackSizePos(
    const std::function<void(size_t, size_t, void*)>& read_record_fn) const {
  size_t pos = read_pos_in_sample_records_;
  if (sample_type_ & PERF_SAMPLE_READ) {
    uint64_t nr = 1;
    if (read_format_ & PERF_FORMAT_GROUP) {
      read_record_fn(pos, sizeof(nr), &nr);
      pos += sizeof(uint64_t);
    }
    size_t u64_count = nr;
    u64_count += (read_format_ & PERF_FORMAT_TOTAL_TIME_ENABLED) ? 1 : 0;
    u64_count += (read_format_ & PERF_FORMAT_TOTAL_TIME_RUNNING) ? 1 : 0;
    u64_count += (read_format_ & PERF_FORMAT_ID) ? nr : 0;
    pos += u64_count * sizeof(uint64_t);
  }
  if (sample_type_ & PERF_SAMPLE_CALLCHAIN) {
    uint64_t ip_nr;
    read_record_fn(pos, sizeof(ip_nr), &ip_nr);
    pos += (ip_nr + 1) * sizeof(uint64_t);
  }
  if (sample_type_ & PERF_SAMPLE_RAW) {
    uint32_t size;
    read_record_fn(pos, sizeof(size), &size);
    pos += size + sizeof(uint32_t);
  }
  if (sample_type_ & PERF_SAMPLE_BRANCH_STACK) {
    uint64_t stack_nr;
    read_record_fn(pos, sizeof(stack_nr), &stack_nr);
    pos += sizeof(uint64_t) + stack_nr * sizeof(BranchStackItemType);
  }
  if (sample_type_ & PERF_SAMPLE_REGS_USER) {
    uint64_t abi;
    read_record_fn(pos, sizeof(abi), &abi);
    pos += (1 + (abi == 0 ? 0 : sample_regs_count_)) * sizeof(uint64_t);
  }
  return (sample_type_ & PERF_SAMPLE_STACK_USER) ? pos : 0;
}

KernelRecordReader::KernelRecordReader(EventFd* event_fd) : event_fd_(event_fd) {
  size_t buffer_size;
  buffer_ = event_fd_->GetMappedBuffer(buffer_size);
  buffer_mask_ = buffer_size - 1;
}

bool KernelRecordReader::GetDataFromKernelBuffer() {
  data_size_ = event_fd_->GetAvailableMmapDataSize(data_pos_);
  if (data_size_ == 0) {
    return false;
  }
  init_data_size_ = data_size_;
  record_header_.size = 0;
  return true;
}

void KernelRecordReader::ReadRecord(size_t pos, size_t size, void* dest) {
  pos = (pos + data_pos_) & buffer_mask_;
  size_t copy_size = std::min(size, buffer_mask_ + 1 - pos);
  memcpy(dest, buffer_ + pos, copy_size);
  if (copy_size < size) {
    memcpy(static_cast<char*>(dest) + copy_size, buffer_, size - copy_size);
  }
}

bool KernelRecordReader::MoveToNextRecord(const RecordParser& parser) {
  data_pos_ = (data_pos_ + record_header_.size) & buffer_mask_;
  data_size_ -= record_header_.size;
  if (data_size_ == 0) {
    event_fd_->DiscardMmapData(init_data_size_);
    init_data_size_ = 0;
    return false;
  }
  ReadRecord(0, sizeof(record_header_), &record_header_);
  size_t time_pos = parser.GetTimePos(record_header_);
  if (time_pos != 0) {
    ReadRecord(time_pos, sizeof(record_time_), &record_time_);
  }
  return true;
}

RecordReadThread::RecordReadThread(size_t record_buffer_size, const perf_event_attr& attr,
                                   size_t min_mmap_pages, size_t max_mmap_pages,
                                   size_t aux_buffer_size, bool allow_truncating_samples,
                                   bool exclude_perf)
    : record_buffer_(record_buffer_size),
      record_parser_(attr),
      attr_(attr),
      min_mmap_pages_(min_mmap_pages),
      max_mmap_pages_(max_mmap_pages),
      aux_buffer_size_(aux_buffer_size) {
  if (attr.sample_type & PERF_SAMPLE_STACK_USER) {
    stack_size_in_sample_record_ = attr.sample_stack_user;
  }
  record_buffer_low_level_ = std::min(record_buffer_size / 4, kDefaultLowBufferLevel);
  record_buffer_critical_level_ = std::min(record_buffer_size / 6, kDefaultCriticalBufferLevel);
  LOG(VERBOSE) << "user buffer size = " << record_buffer_size
               << ", low_level size = " << record_buffer_low_level_
               << ", critical_level size = " << record_buffer_critical_level_;
  if (!allow_truncating_samples) {
    record_buffer_low_level_ = record_buffer_critical_level_;
  }
  if (exclude_perf) {
    exclude_pid_ = getpid();
  }
}

RecordReadThread::~RecordReadThread() {
  if (read_thread_) {
    StopReadThread();
  }
}

bool RecordReadThread::RegisterDataCallback(IOEventLoop& loop,
                                            const std::function<bool()>& data_callback) {
  int cmd_fd[2];
  int data_fd[2];
  if (pipe2(cmd_fd, O_CLOEXEC) != 0 || pipe2(data_fd, O_CLOEXEC) != 0) {
    PLOG(ERROR) << "pipe2";
    return false;
  }
  read_cmd_fd_.reset(cmd_fd[0]);
  write_cmd_fd_.reset(cmd_fd[1]);
  cmd_ = NO_CMD;
  read_data_fd_.reset(data_fd[0]);
  write_data_fd_.reset(data_fd[1]);
  has_data_notification_ = false;
  if (!loop.AddReadEvent(read_data_fd_, data_callback)) {
    return false;
  }
  read_thread_.reset(new std::thread([&]() { RunReadThread(); }));
  return true;
}

bool RecordReadThread::AddEventFds(const std::vector<EventFd*>& event_fds) {
  return SendCmdToReadThread(CMD_ADD_EVENT_FDS, const_cast<std::vector<EventFd*>*>(&event_fds));
}

bool RecordReadThread::RemoveEventFds(const std::vector<EventFd*>& event_fds) {
  return SendCmdToReadThread(CMD_REMOVE_EVENT_FDS, const_cast<std::vector<EventFd*>*>(&event_fds));
}

bool RecordReadThread::SyncKernelBuffer() {
  return SendCmdToReadThread(CMD_SYNC_KERNEL_BUFFER, nullptr);
}

bool RecordReadThread::StopReadThread() {
  bool result = true;
  if (read_thread_ != nullptr) {
    result = SendCmdToReadThread(CMD_STOP_THREAD, nullptr);
    if (result) {
      read_thread_->join();
      read_thread_ = nullptr;
    }
  }
  return result;
}

bool RecordReadThread::SendCmdToReadThread(Cmd cmd, void* cmd_arg) {
  {
    std::lock_guard<std::mutex> lock(cmd_mutex_);
    cmd_ = cmd;
    cmd_arg_ = cmd_arg;
  }
  char unused = 0;
  if (TEMP_FAILURE_RETRY(write(write_cmd_fd_, &unused, 1)) != 1) {
    return false;
  }
  std::unique_lock<std::mutex> lock(cmd_mutex_);
  while (cmd_ != NO_CMD) {
    cmd_finish_cond_.wait(lock);
  }
  return cmd_result_;
}

std::unique_ptr<Record> RecordReadThread::GetRecord() {
  record_buffer_.MoveToNextRecord();
  char* p = record_buffer_.GetCurrentRecord();
  if (p != nullptr) {
    std::unique_ptr<Record> r = ReadRecordFromBuffer(attr_, p, record_buffer_.BufferEnd());
    CHECK(r);
    if (r->type() == PERF_RECORD_AUXTRACE) {
      auto auxtrace = static_cast<AuxTraceRecord*>(r.get());
      record_buffer_.AddCurrentRecordSize(auxtrace->data->aux_size);
      auxtrace->location.addr = r->Binary() + r->size();
    }
    return r;
  }
  if (has_data_notification_) {
    char unused;
    TEMP_FAILURE_RETRY(read(read_data_fd_, &unused, 1));
    has_data_notification_ = false;
  }
  return nullptr;
}

void RecordReadThread::RunReadThread() {
  IncreaseThreadPriority();
  IOEventLoop loop;
  CHECK(loop.AddReadEvent(read_cmd_fd_, [&]() { return HandleCmd(loop); }));
  loop.RunLoop();
}

void RecordReadThread::IncreaseThreadPriority() {
  // TODO: use real time priority for root.
  rlimit rlim;
  int result = getrlimit(RLIMIT_NICE, &rlim);
  if (result == 0 && rlim.rlim_cur == 40) {
    result = setpriority(PRIO_PROCESS, gettid(), -20);
    if (result == 0) {
      LOG(VERBOSE) << "Priority of record read thread is increased";
    }
  }
}

RecordReadThread::Cmd RecordReadThread::GetCmd() {
  std::lock_guard<std::mutex> lock(cmd_mutex_);
  return cmd_;
}

bool RecordReadThread::HandleCmd(IOEventLoop& loop) {
  char unused;
  TEMP_FAILURE_RETRY(read(read_cmd_fd_, &unused, 1));
  bool result = true;
  switch (GetCmd()) {
    case CMD_ADD_EVENT_FDS:
      result = HandleAddEventFds(loop, *static_cast<std::vector<EventFd*>*>(cmd_arg_));
      break;
    case CMD_REMOVE_EVENT_FDS:
      result = HandleRemoveEventFds(*static_cast<std::vector<EventFd*>*>(cmd_arg_));
      break;
    case CMD_SYNC_KERNEL_BUFFER:
      result = ReadRecordsFromKernelBuffer();
      break;
    case CMD_STOP_THREAD:
      result = loop.ExitLoop();
      break;
    default:
      LOG(ERROR) << "Unknown cmd: " << GetCmd();
      result = false;
      break;
  }
  std::lock_guard<std::mutex> lock(cmd_mutex_);
  cmd_ = NO_CMD;
  cmd_result_ = result;
  cmd_finish_cond_.notify_one();
  return true;
}

bool RecordReadThread::HandleAddEventFds(IOEventLoop& loop,
                                         const std::vector<EventFd*>& event_fds) {
  std::unordered_map<int, EventFd*> cpu_map;
  for (size_t pages = max_mmap_pages_; pages >= min_mmap_pages_; pages >>= 1) {
    bool success = true;
    bool report_error = pages == min_mmap_pages_;
    for (EventFd* fd : event_fds) {
      auto it = cpu_map.find(fd->Cpu());
      if (it == cpu_map.end()) {
        if (!fd->CreateMappedBuffer(pages, report_error)) {
          success = false;
          break;
        }
        if (IsEtmEventType(fd->attr().type)) {
          if (!fd->CreateAuxBuffer(aux_buffer_size_, report_error)) {
            fd->DestroyMappedBuffer();
            success = false;
            break;
          }
          has_etm_events_ = true;
        }
        cpu_map[fd->Cpu()] = fd;
      } else {
        if (!fd->ShareMappedBuffer(*(it->second), pages == min_mmap_pages_)) {
          success = false;
          break;
        }
      }
    }
    if (success) {
      LOG(VERBOSE) << "Each kernel buffer is " << pages << " pages.";
      break;
    }
    for (auto& pair : cpu_map) {
      pair.second->DestroyMappedBuffer();
      pair.second->DestroyAuxBuffer();
    }
    cpu_map.clear();
  }
  if (cpu_map.empty()) {
    return false;
  }
  for (auto& pair : cpu_map) {
    if (!pair.second->StartPolling(loop, [this]() { return ReadRecordsFromKernelBuffer(); })) {
      return false;
    }
    kernel_record_readers_.emplace_back(pair.second);
  }
  return true;
}

bool RecordReadThread::HandleRemoveEventFds(const std::vector<EventFd*>& event_fds) {
  for (auto& event_fd : event_fds) {
    if (event_fd->HasMappedBuffer()) {
      auto it = std::find_if(
          kernel_record_readers_.begin(), kernel_record_readers_.end(),
          [&](const KernelRecordReader& reader) { return reader.GetEventFd() == event_fd; });
      if (it != kernel_record_readers_.end()) {
        kernel_record_readers_.erase(it);
        event_fd->StopPolling();
        event_fd->DestroyMappedBuffer();
        event_fd->DestroyAuxBuffer();
      }
    }
  }
  return true;
}

static bool CompareRecordTime(KernelRecordReader* r1, KernelRecordReader* r2) {
  return r1->RecordTime() > r2->RecordTime();
}

// When reading from mmap buffers, we prefer reading from all buffers at once rather than reading
// one buffer at a time. Because by reading all buffers at once, we can merge records from
// different buffers easily in memory. Otherwise, we have to sort records with greater effort.
bool RecordReadThread::ReadRecordsFromKernelBuffer() {
  do {
    std::vector<KernelRecordReader*> readers;
    for (auto& reader : kernel_record_readers_) {
      if (reader.GetDataFromKernelBuffer()) {
        readers.push_back(&reader);
      }
    }
    bool has_data = false;
    if (!readers.empty()) {
      has_data = true;
      if (readers.size() == 1u) {
        // Only one buffer has data, process it directly.
        while (readers[0]->MoveToNextRecord(record_parser_)) {
          PushRecordToRecordBuffer(readers[0]);
        }
      } else {
        // Use a binary heap to merge records from different buffers. As records from the same
        // buffer are already ordered by time, we only need to merge the first record from all
        // buffers. And each time a record is popped from the heap, we put the next record from its
        // buffer into the heap.
        for (auto& reader : readers) {
          reader->MoveToNextRecord(record_parser_);
        }
        std::make_heap(readers.begin(), readers.end(), CompareRecordTime);
        size_t size = readers.size();
        while (size > 0) {
          std::pop_heap(readers.begin(), readers.begin() + size, CompareRecordTime);
          PushRecordToRecordBuffer(readers[size - 1]);
          if (readers[size - 1]->MoveToNextRecord(record_parser_)) {
            std::push_heap(readers.begin(), readers.begin() + size, CompareRecordTime);
          } else {
            size--;
          }
        }
      }
    }
    ReadAuxDataFromKernelBuffer(&has_data);
    if (!has_data) {
      break;
    }
    // Having collected everything available, this is a good time to
    // try to re-enabled any events that might have been disabled by
    // the kernel.
    for (auto event_fd : event_fds_disabled_by_kernel_) {
      event_fd->SetEnableEvent(true);
    }
    event_fds_disabled_by_kernel_.clear();
    if (!SendDataNotificationToMainThread()) {
      return false;
    }
    // If there are no commands, we can loop until there is no more data from the kernel.
  } while (GetCmd() == NO_CMD);
  return true;
}

void RecordReadThread::PushRecordToRecordBuffer(KernelRecordReader* kernel_record_reader) {
  const perf_event_header& header = kernel_record_reader->RecordHeader();
  if (header.type == PERF_RECORD_SAMPLE && exclude_pid_ != -1) {
    uint32_t pid;
    kernel_record_reader->ReadRecord(record_parser_.GetPidPosInSampleRecord(), sizeof(pid), &pid);
    if (pid == exclude_pid_) {
      return;
    }
  }
  if (header.type == PERF_RECORD_SAMPLE && stack_size_in_sample_record_ > 1024) {
    size_t free_size = record_buffer_.GetFreeSize();
    if (free_size < record_buffer_critical_level_) {
      // When the free size in record buffer is below critical level, drop sample records to save
      // space for more important records (like mmap or fork records).
      stat_.userspace_lost_samples++;
      return;
    }
    size_t stack_size_limit = stack_size_in_sample_record_;
    if (free_size < record_buffer_low_level_) {
      // When the free size in record buffer is below low level, truncate the stack data in sample
      // records to 1K. This makes the unwinder unwind only part of the callchains, but hopefully
      // the call chain joiner can complete the callchains.
      stack_size_limit = 1024;
    }
    size_t stack_size_pos =
        record_parser_.GetStackSizePos([&](size_t pos, size_t size, void* dest) {
          return kernel_record_reader->ReadRecord(pos, size, dest);
        });
    uint64_t stack_size;
    kernel_record_reader->ReadRecord(stack_size_pos, sizeof(stack_size), &stack_size);
    if (stack_size > 0) {
      size_t dyn_stack_size_pos = stack_size_pos + sizeof(stack_size) + stack_size;
      uint64_t dyn_stack_size;
      kernel_record_reader->ReadRecord(dyn_stack_size_pos, sizeof(dyn_stack_size), &dyn_stack_size);
      if (dyn_stack_size == 0) {
        // If stack_user_data.dyn_size == 0, it may be because the kernel misses the patch to
        // update dyn_size, like in N9 (See b/22612370). So assume all stack data is valid if
        // dyn_size == 0.
        // TODO: Add cts test.
        dyn_stack_size = stack_size;
      }
      // When simpleperf requests the kernel to dump 64K stack per sample, it will allocate 64K
      // space in each sample to store stack data. However, a thread may use less stack than 64K.
      // So not all the 64K stack data in a sample is valid, and we only need to keep valid stack
      // data, whose size is dyn_stack_size.
      uint64_t new_stack_size = Align(std::min<uint64_t>(dyn_stack_size, stack_size_limit), 8);
      if (stack_size > new_stack_size) {
        // Remove part of the stack data.
        perf_event_header new_header = header;
        new_header.size -= stack_size - new_stack_size;
        char* p = record_buffer_.AllocWriteSpace(new_header.size);
        if (p != nullptr) {
          memcpy(p, &new_header, sizeof(new_header));
          size_t pos = sizeof(new_header);
          kernel_record_reader->ReadRecord(pos, stack_size_pos - pos, p + pos);
          memcpy(p + stack_size_pos, &new_stack_size, sizeof(uint64_t));
          pos = stack_size_pos + sizeof(uint64_t);
          kernel_record_reader->ReadRecord(pos, new_stack_size, p + pos);
          memcpy(p + pos + new_stack_size, &new_stack_size, sizeof(uint64_t));
          record_buffer_.FinishWrite();
          if (new_stack_size < dyn_stack_size) {
            stat_.userspace_truncated_stack_samples++;
          }
        } else {
          stat_.userspace_lost_samples++;
        }
        return;
      }
    }
  }
  char* p = record_buffer_.AllocWriteSpace(header.size);
  if (p != nullptr) {
    kernel_record_reader->ReadRecord(0, header.size, p);
    if (header.type == PERF_RECORD_AUX) {
      AuxRecord r;
      if (r.Parse(attr_, p, p + header.size) && (r.data->flags & PERF_AUX_FLAG_TRUNCATED)) {
        // When the kernel sees aux output flagged with PERF_AUX_FLAG_TRUNCATED,
        // it sets a pending disable on the event:
        // https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/kernel/events/ring_buffer.c?h=v5.13#n516
        // The truncated flag is set by the Coresight driver when some trace was lost,
        // which can be caused by a full buffer. Therefore, try to re-enable the event
        // only after we have collected the aux data.
        event_fds_disabled_by_kernel_.insert(kernel_record_reader->GetEventFd());
      }
    } else if (header.type == PERF_RECORD_LOST) {
      LostRecord r;
      if (r.Parse(attr_, p, p + header.size)) {
        stat_.kernelspace_lost_records += static_cast<size_t>(r.lost);
      }
    }
    record_buffer_.FinishWrite();
  } else {
    if (header.type == PERF_RECORD_SAMPLE) {
      stat_.userspace_lost_samples++;
    } else {
      stat_.userspace_lost_non_samples++;
    }
  }
}

void RecordReadThread::ReadAuxDataFromKernelBuffer(bool* has_data) {
  if (!has_etm_events_) {
    return;
  }
  for (auto& reader : kernel_record_readers_) {
    EventFd* event_fd = reader.GetEventFd();
    if (event_fd->HasAuxBuffer()) {
      char* buf[2];
      size_t size[2];
      uint64_t offset = event_fd->GetAvailableAuxData(&buf[0], &size[0], &buf[1], &size[1]);
      size_t aux_size = size[0] + size[1];
      if (aux_size == 0) {
        continue;
      }
      *has_data = true;
      AuxTraceRecord auxtrace(Align(aux_size, 8), offset, event_fd->Cpu(), 0, event_fd->Cpu());
      size_t alloc_size = auxtrace.size() + auxtrace.data->aux_size;
      char* p = nullptr;
      if ((record_buffer_.GetFreeSize() < alloc_size + record_buffer_critical_level_) ||
          (p = record_buffer_.AllocWriteSpace(alloc_size)) == nullptr) {
        stat_.lost_aux_data_size += aux_size;
      } else {
        CHECK(p != nullptr);
        MoveToBinaryFormat(auxtrace.Binary(), auxtrace.size(), p);
        MoveToBinaryFormat(buf[0], size[0], p);
        if (size[1] != 0) {
          MoveToBinaryFormat(buf[1], size[1], p);
        }
        size_t pad_size = auxtrace.data->aux_size - aux_size;
        if (pad_size != 0) {
          uint64_t pad = 0;
          memcpy(p, &pad, pad_size);
        }
        record_buffer_.FinishWrite();
        stat_.aux_data_size += aux_size;
        LOG(DEBUG) << "record aux data " << aux_size << " bytes";
      }
      event_fd->DiscardAuxData(aux_size);
    }
  }
}

bool RecordReadThread::SendDataNotificationToMainThread() {
  if (has_etm_events_) {
    // For ETM recording, the default buffer size is large enough to hold ETM data for several
    // seconds. To reduce impact of processing ETM data (especially when --decode-etm is used),
    // delay processing ETM data until the buffer is half full.
    if (record_buffer_.GetFreeSize() >= record_buffer_.size() / 2) {
      return true;
    }
  }
  if (!has_data_notification_.load(std::memory_order_relaxed)) {
    has_data_notification_ = true;
    char unused = 0;
    if (TEMP_FAILURE_RETRY(write(write_data_fd_, &unused, 1)) != 1) {
      PLOG(ERROR) << "write";
      return false;
    }
  }
  return true;
}

}  // namespace simpleperf