summaryrefslogtreecommitdiff
path: root/simpleperf/callchain.h
blob: 0a9f173b4e394b90aac261403d396f8379debb3e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
/*
 * Copyright (C) 2015 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef SIMPLE_PERF_CALLCHAIN_H_
#define SIMPLE_PERF_CALLCHAIN_H_

#include <string.h>

#include <algorithm>
#include <functional>
#include <memory>
#include <queue>
#include <vector>

#include <android-base/logging.h>

namespace simpleperf {

template <typename EntryT>
struct CallChainNode {
  uint64_t period;
  uint64_t children_period;
  std::vector<EntryT*> chain;
  std::vector<std::unique_ptr<CallChainNode>> children;
};

template <typename EntryT>
struct CallChainRoot {
  typedef CallChainNode<EntryT> NodeT;
  // If duplicated = true, this call tree is part of another call tree.
  // And we don't need to show it in brief callgraph report mode.
  bool duplicated;
  uint64_t children_period;
  std::vector<std::unique_ptr<NodeT>> children;

  CallChainRoot() : duplicated(false), children_period(0) {}

  void AddCallChain(const std::vector<EntryT*>& callchain, uint64_t period,
                    std::function<bool(const EntryT*, const EntryT*)> is_same_sample) {
    children_period += period;
    NodeT* p = FindMatchingNode(children, callchain[0], is_same_sample);
    if (p == nullptr) {
      std::unique_ptr<NodeT> new_node = AllocateNode(callchain, 0, period, 0);
      children.push_back(std::move(new_node));
      return;
    }
    size_t callchain_pos = 0;
    while (true) {
      size_t match_length = GetMatchingLengthInNode(p, callchain, callchain_pos, is_same_sample);
      CHECK_GT(match_length, 0u);
      callchain_pos += match_length;
      bool find_child = true;
      if (match_length < p->chain.size()) {
        SplitNode(p, match_length);
        find_child = false;  // No need to find matching node in p->children.
      }
      if (callchain_pos == callchain.size()) {
        p->period += period;
        return;
      }
      p->children_period += period;
      if (find_child) {
        NodeT* np = FindMatchingNode(p->children, callchain[callchain_pos], is_same_sample);
        if (np != nullptr) {
          p = np;
          continue;
        }
      }
      std::unique_ptr<NodeT> new_node = AllocateNode(callchain, callchain_pos, period, 0);
      p->children.push_back(std::move(new_node));
      break;
    }
  }

  void SortByPeriod() {
    std::queue<std::vector<std::unique_ptr<NodeT>>*> queue;
    queue.push(&children);
    while (!queue.empty()) {
      std::vector<std::unique_ptr<NodeT>>* v = queue.front();
      queue.pop();
      std::sort(v->begin(), v->end(), CallChainRoot::CompareNodeByPeriod);
      for (auto& node : *v) {
        if (!node->children.empty()) {
          queue.push(&node->children);
        }
      }
    }
  }

 private:
  NodeT* FindMatchingNode(const std::vector<std::unique_ptr<NodeT>>& nodes, const EntryT* sample,
                          std::function<bool(const EntryT*, const EntryT*)> is_same_sample) {
    for (auto& node : nodes) {
      if (is_same_sample(node->chain.front(), sample)) {
        return node.get();
      }
    }
    return nullptr;
  }

  size_t GetMatchingLengthInNode(NodeT* node, const std::vector<EntryT*>& chain, size_t chain_start,
                                 std::function<bool(const EntryT*, const EntryT*)> is_same_sample) {
    size_t i, j;
    for (i = 0, j = chain_start; i < node->chain.size() && j < chain.size(); ++i, ++j) {
      if (!is_same_sample(node->chain[i], chain[j])) {
        break;
      }
    }
    return i;
  }

  void SplitNode(NodeT* parent, size_t parent_length) {
    std::unique_ptr<NodeT> child =
        AllocateNode(parent->chain, parent_length, parent->period, parent->children_period);
    child->children = std::move(parent->children);
    parent->period = 0;
    parent->children_period = child->period + child->children_period;
    parent->chain.resize(parent_length);
    parent->children.clear();
    parent->children.push_back(std::move(child));
  }

  std::unique_ptr<NodeT> AllocateNode(const std::vector<EntryT*>& chain, size_t chain_start,
                                      uint64_t period, uint64_t children_period) {
    std::unique_ptr<NodeT> node(new NodeT);
    for (size_t i = chain_start; i < chain.size(); ++i) {
      node->chain.push_back(chain[i]);
    }
    node->period = period;
    node->children_period = children_period;
    return node;
  }

  static bool CompareNodeByPeriod(const std::unique_ptr<NodeT>& n1,
                                  const std::unique_ptr<NodeT>& n2) {
    uint64_t period1 = n1->period + n1->children_period;
    uint64_t period2 = n2->period + n2->children_period;
    return period1 > period2;
  }
};

}  // namespace simpleperf

#endif  // SIMPLE_PERF_CALLCHAIN_H_