summaryrefslogtreecommitdiff
path: root/simpleperf/cmd_inject.cpp
blob: 6798a32ad677a81e25b91478d6081d6ce472dc64 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
/*
 * Copyright (C) 2019 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <stdint.h>
#include <stdio.h>
#include <unistd.h>

#include <memory>
#include <optional>
#include <string>

#include <android-base/parseint.h>
#include <android-base/strings.h>

#include "BranchListFile.h"
#include "ETMDecoder.h"
#include "RegEx.h"
#include "command.h"
#include "record_file.h"
#include "system/extras/simpleperf/branch_list.pb.h"
#include "thread_tree.h"
#include "utils.h"

namespace simpleperf {

namespace {

using AddrPair = std::pair<uint64_t, uint64_t>;

struct AddrPairHash {
  size_t operator()(const AddrPair& ap) const noexcept {
    size_t seed = 0;
    HashCombine(seed, ap.first);
    HashCombine(seed, ap.second);
    return seed;
  }
};

enum class OutputFormat {
  AutoFDO,
  BranchList,
};

struct AutoFDOBinaryInfo {
  uint64_t first_load_segment_addr = 0;
  std::unordered_map<uint64_t, uint64_t> address_count_map;
  std::unordered_map<AddrPair, uint64_t, AddrPairHash> range_count_map;
  std::unordered_map<AddrPair, uint64_t, AddrPairHash> branch_count_map;

  void AddAddress(uint64_t addr) { OverflowSafeAdd(address_count_map[addr], 1); }

  void AddRange(uint64_t begin, uint64_t end) {
    OverflowSafeAdd(range_count_map[std::make_pair(begin, end)], 1);
  }

  void AddBranch(uint64_t from, uint64_t to) {
    OverflowSafeAdd(branch_count_map[std::make_pair(from, to)], 1);
  }

  void AddInstrRange(const ETMInstrRange& instr_range) {
    uint64_t total_count = instr_range.branch_taken_count;
    OverflowSafeAdd(total_count, instr_range.branch_not_taken_count);
    OverflowSafeAdd(range_count_map[AddrPair(instr_range.start_addr, instr_range.end_addr)],
                    total_count);
    if (instr_range.branch_taken_count > 0) {
      OverflowSafeAdd(branch_count_map[AddrPair(instr_range.end_addr, instr_range.branch_to_addr)],
                      instr_range.branch_taken_count);
    }
  }

  void Merge(const AutoFDOBinaryInfo& other) {
    for (const auto& p : other.address_count_map) {
      auto res = address_count_map.emplace(p.first, p.second);
      if (!res.second) {
        OverflowSafeAdd(res.first->second, p.second);
      }
    }
    for (const auto& p : other.range_count_map) {
      auto res = range_count_map.emplace(p.first, p.second);
      if (!res.second) {
        OverflowSafeAdd(res.first->second, p.second);
      }
    }
    for (const auto& p : other.branch_count_map) {
      auto res = branch_count_map.emplace(p.first, p.second);
      if (!res.second) {
        OverflowSafeAdd(res.first->second, p.second);
      }
    }
  }
};

using AutoFDOBinaryCallback = std::function<void(const BinaryKey&, AutoFDOBinaryInfo&)>;
using ETMBinaryCallback = std::function<void(const BinaryKey&, ETMBinary&)>;
using LBRDataCallback = std::function<void(LBRData&)>;

static uint64_t GetFirstLoadSegmentVaddr(const Dso* dso) {
  ElfStatus status;
  if (auto elf = ElfFile::Open(dso->GetDebugFilePath(), &status); elf) {
    for (const auto& segment : elf->GetProgramHeader()) {
      if (segment.is_load) {
        return segment.vaddr;
      }
    }
  }
  return 0;
}

// Base class for reading perf.data and generating AutoFDO or branch list data.
class PerfDataReader {
 public:
  static std::string GetDataType(RecordFileReader& reader) {
    const EventAttrIds& attrs = reader.AttrSection();
    if (attrs.size() != 1) {
      return "unknown";
    }
    const perf_event_attr& attr = attrs[0].attr;
    if (IsEtmEventType(attr.type)) {
      return "etm";
    }
    if (attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
      return "lbr";
    }
    return "unknown";
  }

  PerfDataReader(std::unique_ptr<RecordFileReader> reader, bool exclude_perf,
                 const RegEx* binary_name_regex)
      : reader_(std::move(reader)),
        exclude_perf_(exclude_perf),
        binary_filter_(binary_name_regex) {}
  virtual ~PerfDataReader() {}

  std::string GetDataType() const { return GetDataType(*reader_); }

  void AddCallback(const AutoFDOBinaryCallback& callback) { autofdo_callback_ = callback; }
  void AddCallback(const ETMBinaryCallback& callback) { etm_binary_callback_ = callback; }
  void AddCallback(const LBRDataCallback& callback) { lbr_data_callback_ = callback; }

  virtual bool Read() {
    if (exclude_perf_) {
      const auto& info_map = reader_->GetMetaInfoFeature();
      if (auto it = info_map.find("recording_process"); it == info_map.end()) {
        LOG(ERROR) << reader_->FileName() << " doesn't support --exclude-perf";
        return false;
      } else {
        int pid;
        if (!android::base::ParseInt(it->second, &pid, 0)) {
          LOG(ERROR) << "invalid recording_process " << it->second << " in " << reader_->FileName();
          return false;
        }
        exclude_pid_ = pid;
      }
    }

    if (!reader_->LoadBuildIdAndFileFeatures(thread_tree_)) {
      return false;
    }
    if (!reader_->ReadDataSection([this](auto r) { return ProcessRecord(*r); })) {
      return false;
    }
    return PostProcess();
  }

 protected:
  virtual bool ProcessRecord(Record& r) = 0;
  virtual bool PostProcess() = 0;

  void ProcessAutoFDOBinaryInfo() {
    for (auto& p : autofdo_binary_map_) {
      const Dso* dso = p.first;
      AutoFDOBinaryInfo& binary = p.second;
      binary.first_load_segment_addr = GetFirstLoadSegmentVaddr(dso);
      autofdo_callback_(BinaryKey(dso, 0), binary);
    }
  }

  const std::string data_type_;
  std::unique_ptr<RecordFileReader> reader_;
  bool exclude_perf_;
  BinaryFilter binary_filter_;

  std::optional<int> exclude_pid_;
  ThreadTree thread_tree_;
  AutoFDOBinaryCallback autofdo_callback_;
  ETMBinaryCallback etm_binary_callback_;
  LBRDataCallback lbr_data_callback_;
  // Store results for AutoFDO.
  std::unordered_map<const Dso*, AutoFDOBinaryInfo> autofdo_binary_map_;
};

class ETMThreadTreeWithFilter : public ETMThreadTree {
 public:
  ETMThreadTreeWithFilter(ThreadTree& thread_tree, std::optional<int>& exclude_pid)
      : thread_tree_(thread_tree), exclude_pid_(exclude_pid) {}

  void DisableThreadExitRecords() override { thread_tree_.DisableThreadExitRecords(); }

  const ThreadEntry* FindThread(int tid) override {
    const ThreadEntry* thread = thread_tree_.FindThread(tid);
    if (thread != nullptr && exclude_pid_ && thread->pid == exclude_pid_) {
      return nullptr;
    }
    return thread;
  }

  const MapSet& GetKernelMaps() override { return thread_tree_.GetKernelMaps(); }

 private:
  ThreadTree& thread_tree_;
  std::optional<int>& exclude_pid_;
};

// Read perf.data with ETM data and generate AutoFDO or branch list data.
class ETMPerfDataReader : public PerfDataReader {
 public:
  ETMPerfDataReader(std::unique_ptr<RecordFileReader> reader, bool exclude_perf,
                    const RegEx* binary_name_regex, ETMDumpOption etm_dump_option)
      : PerfDataReader(std::move(reader), exclude_perf, binary_name_regex),
        etm_dump_option_(etm_dump_option),
        etm_thread_tree_(thread_tree_, exclude_pid_) {}

  bool Read() override {
    if (reader_->HasFeature(PerfFileFormat::FEAT_ETM_BRANCH_LIST)) {
      return ProcessETMBranchListFeature();
    }
    return PerfDataReader::Read();
  }

 private:
  bool ProcessRecord(Record& r) override {
    thread_tree_.Update(r);
    if (r.type() == PERF_RECORD_AUXTRACE_INFO) {
      etm_decoder_ = ETMDecoder::Create(static_cast<AuxTraceInfoRecord&>(r), etm_thread_tree_);
      if (!etm_decoder_) {
        return false;
      }
      etm_decoder_->EnableDump(etm_dump_option_);
      if (autofdo_callback_) {
        etm_decoder_->RegisterCallback(
            [this](const ETMInstrRange& range) { ProcessInstrRange(range); });
      } else if (etm_binary_callback_) {
        etm_decoder_->RegisterCallback(
            [this](const ETMBranchList& branch) { ProcessETMBranchList(branch); });
      }
    } else if (r.type() == PERF_RECORD_AUX) {
      AuxRecord& aux = static_cast<AuxRecord&>(r);
      if (aux.data->aux_size > SIZE_MAX) {
        LOG(ERROR) << "invalid aux size";
        return false;
      }
      size_t aux_size = aux.data->aux_size;
      if (aux_size > 0) {
        bool error = false;
        if (!reader_->ReadAuxData(aux.Cpu(), aux.data->aux_offset, aux_size, aux_data_buffer_,
                                  error)) {
          return !error;
        }
        if (!etm_decoder_) {
          LOG(ERROR) << "ETMDecoder isn't created";
          return false;
        }
        return etm_decoder_->ProcessData(aux_data_buffer_.data(), aux_size, !aux.Unformatted(),
                                         aux.Cpu());
      }
    } else if (r.type() == PERF_RECORD_MMAP && r.InKernel()) {
      auto& mmap_r = static_cast<MmapRecord&>(r);
      if (android::base::StartsWith(mmap_r.filename, DEFAULT_KERNEL_MMAP_NAME)) {
        kernel_map_start_addr_ = mmap_r.data->addr;
      }
    }
    return true;
  }

  bool PostProcess() override {
    if (etm_decoder_ && !etm_decoder_->FinishData()) {
      return false;
    }
    if (autofdo_callback_) {
      ProcessAutoFDOBinaryInfo();
    } else if (etm_binary_callback_) {
      ProcessETMBinary();
    }
    return true;
  }

  bool ProcessETMBranchListFeature() {
    if (exclude_perf_) {
      LOG(WARNING) << "--exclude-perf has no effect on perf.data with etm branch list";
    }
    if (autofdo_callback_) {
      LOG(ERROR) << "convert to autofdo format isn't support on perf.data with etm branch list";
      return false;
    }
    CHECK(etm_binary_callback_);
    std::string s;
    if (!reader_->ReadFeatureSection(PerfFileFormat::FEAT_ETM_BRANCH_LIST, &s)) {
      return false;
    }
    ETMBinaryMap binary_map;
    if (!StringToETMBinaryMap(s, binary_map)) {
      return false;
    }
    for (auto& [key, binary] : binary_map) {
      if (!binary_filter_.Filter(key.path)) {
        continue;
      }
      etm_binary_callback_(key, binary);
    }
    return true;
  }

  void ProcessInstrRange(const ETMInstrRange& instr_range) {
    if (!binary_filter_.Filter(instr_range.dso)) {
      return;
    }

    autofdo_binary_map_[instr_range.dso].AddInstrRange(instr_range);
  }

  void ProcessETMBranchList(const ETMBranchList& branch_list) {
    if (!binary_filter_.Filter(branch_list.dso)) {
      return;
    }

    auto& branch_map = etm_binary_map_[branch_list.dso].branch_map;
    ++branch_map[branch_list.addr][branch_list.branch];
  }

  void ProcessETMBinary() {
    for (auto& p : etm_binary_map_) {
      Dso* dso = p.first;
      ETMBinary& binary = p.second;
      binary.dso_type = dso->type();
      BinaryKey key(dso, 0);
      if (binary.dso_type == DSO_KERNEL) {
        if (kernel_map_start_addr_ == 0) {
          LOG(WARNING) << "Can't convert kernel ip addresses without kernel start addr. So remove "
                          "branches for the kernel.";
          continue;
        }
        if (dso->GetDebugFilePath() == dso->Path()) {
          // vmlinux isn't available. We still use kernel ip addr. Put kernel start addr in proto
          // for address conversion later.
          key.kernel_start_addr = kernel_map_start_addr_;
        }
      }
      etm_binary_callback_(key, binary);
    }
  }

  ETMDumpOption etm_dump_option_;
  ETMThreadTreeWithFilter etm_thread_tree_;
  std::vector<uint8_t> aux_data_buffer_;
  std::unique_ptr<ETMDecoder> etm_decoder_;
  uint64_t kernel_map_start_addr_ = 0;
  // Store etm branch list data.
  std::unordered_map<Dso*, ETMBinary> etm_binary_map_;
};

static std::optional<std::vector<AutoFDOBinaryInfo>> ConvertLBRDataToAutoFDO(
    const LBRData& lbr_data) {
  std::vector<AutoFDOBinaryInfo> binaries(lbr_data.binaries.size());
  for (const LBRSample& sample : lbr_data.samples) {
    if (sample.binary_id != 0) {
      if (sample.binary_id > binaries.size()) {
        LOG(ERROR) << "binary_id out of range";
        return std::nullopt;
      }
      binaries[sample.binary_id - 1].AddAddress(sample.vaddr_in_file);
    }
    for (size_t i = 0; i < sample.branches.size(); ++i) {
      const LBRBranch& branch = sample.branches[i];
      if (branch.from_binary_id == 0) {
        continue;
      }
      if (branch.from_binary_id > binaries.size()) {
        LOG(ERROR) << "binary_id out of range";
        return std::nullopt;
      }
      if (branch.from_binary_id == branch.to_binary_id) {
        binaries[branch.from_binary_id - 1].AddBranch(branch.from_vaddr_in_file,
                                                      branch.to_vaddr_in_file);
      }
      if (i > 0 && branch.from_binary_id == sample.branches[i - 1].to_binary_id) {
        uint64_t begin = sample.branches[i - 1].to_vaddr_in_file;
        uint64_t end = branch.from_vaddr_in_file;
        // Use the same logic to skip bogus LBR data as AutoFDO.
        if (end < begin || end - begin > (1 << 20)) {
          continue;
        }
        binaries[branch.from_binary_id - 1].AddRange(begin, end);
      }
    }
  }
  return binaries;
}

class LBRPerfDataReader : public PerfDataReader {
 public:
  LBRPerfDataReader(std::unique_ptr<RecordFileReader> reader, bool exclude_perf,
                    const RegEx* binary_name_regex)
      : PerfDataReader(std::move(reader), exclude_perf, binary_name_regex) {}

 private:
  bool ProcessRecord(Record& r) override {
    thread_tree_.Update(r);
    if (r.type() == PERF_RECORD_SAMPLE) {
      auto& sr = static_cast<SampleRecord&>(r);
      ThreadEntry* thread = thread_tree_.FindThread(sr.tid_data.tid);
      if (thread == nullptr) {
        return true;
      }
      auto& stack = sr.branch_stack_data;
      lbr_data_.samples.resize(lbr_data_.samples.size() + 1);
      LBRSample& sample = lbr_data_.samples.back();
      std::pair<uint32_t, uint64_t> binary_addr = IpToBinaryAddr(*thread, sr.ip_data.ip);
      sample.binary_id = binary_addr.first;
      bool has_valid_binary_id = sample.binary_id != 0;
      sample.vaddr_in_file = binary_addr.second;
      sample.branches.resize(stack.stack_nr);
      for (size_t i = 0; i < stack.stack_nr; ++i) {
        uint64_t from_ip = stack.stack[i].from;
        uint64_t to_ip = stack.stack[i].to;
        LBRBranch& branch = sample.branches[i];
        binary_addr = IpToBinaryAddr(*thread, from_ip);
        branch.from_binary_id = binary_addr.first;
        branch.from_vaddr_in_file = binary_addr.second;
        binary_addr = IpToBinaryAddr(*thread, to_ip);
        branch.to_binary_id = binary_addr.first;
        branch.to_vaddr_in_file = binary_addr.second;
        if (branch.from_binary_id != 0 || branch.to_binary_id != 0) {
          has_valid_binary_id = true;
        }
      }
      if (!has_valid_binary_id) {
        lbr_data_.samples.pop_back();
      }
    }
    return true;
  }

  bool PostProcess() override {
    if (autofdo_callback_) {
      std::optional<std::vector<AutoFDOBinaryInfo>> binaries = ConvertLBRDataToAutoFDO(lbr_data_);
      if (!binaries) {
        return false;
      }
      for (const auto& [dso, binary_id] : dso_map_) {
        autofdo_binary_map_[dso] = std::move(binaries.value()[binary_id - 1]);
      }
      ProcessAutoFDOBinaryInfo();
    } else if (lbr_data_callback_) {
      lbr_data_callback_(lbr_data_);
    }
    return true;
  }

  std::pair<uint32_t, uint64_t> IpToBinaryAddr(ThreadEntry& thread, uint64_t ip) {
    const MapEntry* map = thread_tree_.FindMap(&thread, ip);
    Dso* dso = map->dso;
    if (thread_tree_.IsUnknownDso(dso) || !binary_filter_.Filter(dso)) {
      return std::make_pair(0, 0);
    }
    uint32_t binary_id = GetBinaryId(dso);
    uint64_t vaddr_in_file = dso->IpToVaddrInFile(ip, map->start_addr, map->pgoff);
    return std::make_pair(binary_id, vaddr_in_file);
  }

  uint32_t GetBinaryId(const Dso* dso) {
    if (auto it = dso_map_.find(dso); it != dso_map_.end()) {
      return it->second;
    }
    lbr_data_.binaries.emplace_back(dso, 0);
    uint32_t binary_id = static_cast<uint32_t>(lbr_data_.binaries.size());
    dso_map_[dso] = binary_id;
    return binary_id;
  }

  LBRData lbr_data_;
  // Map from dso to binary_id in lbr_data_.
  std::unordered_map<const Dso*, uint32_t> dso_map_;
};

// Read a protobuf file specified by branch_list.proto.
class BranchListReader {
 public:
  BranchListReader(const std::string& filename, const RegEx* binary_name_regex)
      : filename_(filename), binary_filter_(binary_name_regex) {}

  void AddCallback(const ETMBinaryCallback& callback) { etm_binary_callback_ = callback; }
  void AddCallback(const LBRDataCallback& callback) { lbr_data_callback_ = callback; }

  bool Read() {
    std::string s;
    if (!android::base::ReadFileToString(filename_, &s)) {
      PLOG(ERROR) << "failed to read " << filename_;
      return false;
    }
    ETMBinaryMap etm_data;
    LBRData lbr_data;
    if (!ParseBranchListData(s, etm_data, lbr_data)) {
      PLOG(ERROR) << "file is in wrong format: " << filename_;
      return false;
    }
    if (etm_binary_callback_ && !etm_data.empty()) {
      ProcessETMData(etm_data);
    }
    if (lbr_data_callback_ && !lbr_data.samples.empty()) {
      ProcessLBRData(lbr_data);
    }
    return true;
  }

 private:
  void ProcessETMData(ETMBinaryMap& etm_data) {
    for (auto& [key, binary] : etm_data) {
      if (!binary_filter_.Filter(key.path)) {
        continue;
      }
      etm_binary_callback_(key, binary);
    }
  }

  void ProcessLBRData(LBRData& lbr_data) {
    // 1. Check if we need to remove binaries.
    std::vector<uint32_t> new_ids(lbr_data.binaries.size());
    uint32_t next_id = 1;

    for (size_t i = 0; i < lbr_data.binaries.size(); ++i) {
      if (!binary_filter_.Filter(lbr_data.binaries[i].path)) {
        new_ids[i] = 0;
      } else {
        new_ids[i] = next_id++;
      }
    }

    if (next_id <= lbr_data.binaries.size()) {
      // 2. Modify lbr_data.binaries.
      for (size_t i = 0; i < lbr_data.binaries.size(); ++i) {
        if (new_ids[i] != 0) {
          size_t new_pos = new_ids[i] - 1;
          lbr_data.binaries[new_pos] = lbr_data.binaries[i];
        }
      }
      lbr_data.binaries.resize(next_id - 1);

      // 3. Modify lbr_data.samples.
      auto convert_id = [&](uint32_t& binary_id) {
        if (binary_id != 0) {
          binary_id = (binary_id <= new_ids.size()) ? new_ids[binary_id - 1] : 0;
        }
      };
      std::vector<LBRSample> new_samples;
      for (LBRSample& sample : lbr_data.samples) {
        convert_id(sample.binary_id);
        bool has_valid_binary_id = sample.binary_id != 0;
        for (LBRBranch& branch : sample.branches) {
          convert_id(branch.from_binary_id);
          convert_id(branch.to_binary_id);
          if (branch.from_binary_id != 0 || branch.to_binary_id != 0) {
            has_valid_binary_id = true;
          }
        }
        if (has_valid_binary_id) {
          new_samples.emplace_back(std::move(sample));
        }
      }
      lbr_data.samples = std::move(new_samples);
    }
    lbr_data_callback_(lbr_data);
  }

  const std::string filename_;
  BinaryFilter binary_filter_;
  ETMBinaryCallback etm_binary_callback_;
  LBRDataCallback lbr_data_callback_;
};

// Convert ETMBinary into AutoFDOBinaryInfo.
class ETMBranchListToAutoFDOConverter {
 public:
  std::unique_ptr<AutoFDOBinaryInfo> Convert(const BinaryKey& key, ETMBinary& binary) {
    BuildId build_id = key.build_id;
    std::unique_ptr<Dso> dso = Dso::CreateDsoWithBuildId(binary.dso_type, key.path, build_id);
    if (!dso || !CheckBuildId(dso.get(), key.build_id)) {
      return nullptr;
    }
    std::unique_ptr<AutoFDOBinaryInfo> autofdo_binary(new AutoFDOBinaryInfo);
    autofdo_binary->first_load_segment_addr = GetFirstLoadSegmentVaddr(dso.get());

    if (dso->type() == DSO_KERNEL) {
      ModifyBranchMapForKernel(dso.get(), key.kernel_start_addr, binary);
    }

    auto process_instr_range = [&](const ETMInstrRange& range) {
      CHECK_EQ(range.dso, dso.get());
      autofdo_binary->AddInstrRange(range);
    };

    auto result = ConvertETMBranchMapToInstrRanges(dso.get(), binary.GetOrderedBranchMap(),
                                                   process_instr_range);
    if (!result.ok()) {
      LOG(WARNING) << "failed to build instr ranges for binary " << dso->Path() << ": "
                   << result.error();
      return nullptr;
    }
    return autofdo_binary;
  }

 private:
  bool CheckBuildId(Dso* dso, const BuildId& expected_build_id) {
    if (expected_build_id.IsEmpty()) {
      return true;
    }
    BuildId build_id;
    return GetBuildIdFromDsoPath(dso->GetDebugFilePath(), &build_id) &&
           build_id == expected_build_id;
  }

  void ModifyBranchMapForKernel(Dso* dso, uint64_t kernel_start_addr, ETMBinary& binary) {
    if (kernel_start_addr == 0) {
      // vmlinux has been provided when generating branch lists. Addresses in branch lists are
      // already vaddrs in vmlinux.
      return;
    }
    // Addresses are still kernel ip addrs in memory. Need to convert them to vaddrs in vmlinux.
    UnorderedETMBranchMap new_branch_map;
    for (auto& p : binary.branch_map) {
      uint64_t vaddr_in_file = dso->IpToVaddrInFile(p.first, kernel_start_addr, 0);
      new_branch_map[vaddr_in_file] = std::move(p.second);
    }
    binary.branch_map = std::move(new_branch_map);
  }
};

// Write instruction ranges to a file in AutoFDO text format.
class AutoFDOWriter {
 public:
  void AddAutoFDOBinary(const BinaryKey& key, AutoFDOBinaryInfo& binary) {
    auto it = binary_map_.find(key);
    if (it == binary_map_.end()) {
      binary_map_[key] = std::move(binary);
    } else {
      it->second.Merge(binary);
    }
  }

  bool Write(const std::string& output_filename) {
    std::unique_ptr<FILE, decltype(&fclose)> output_fp(fopen(output_filename.c_str(), "w"), fclose);
    if (!output_fp) {
      PLOG(ERROR) << "failed to write to " << output_filename;
      return false;
    }
    // autofdo_binary_map is used to store instruction ranges, which can have a large amount. And
    // it has a larger access time (instruction ranges * executed time). So it's better to use
    // unorder_maps to speed up access time. But we also want a stable output here, to compare
    // output changes result from code changes. So generate a sorted output here.
    std::vector<BinaryKey> keys;
    for (auto& p : binary_map_) {
      keys.emplace_back(p.first);
    }
    std::sort(keys.begin(), keys.end(),
              [](const BinaryKey& key1, const BinaryKey& key2) { return key1.path < key2.path; });
    if (keys.size() > 1) {
      fprintf(output_fp.get(),
              "// Please split this file. AutoFDO only accepts profile for one binary.\n");
    }
    for (const auto& key : keys) {
      const AutoFDOBinaryInfo& binary = binary_map_[key];
      // AutoFDO text format needs file_offsets instead of virtual addrs in a binary. And it uses
      // below formula: vaddr = file_offset + GetFirstLoadSegmentVaddr().
      uint64_t base_addr = binary.first_load_segment_addr;

      // Write range_count_map. Sort the output by addrs.
      std::vector<std::pair<AddrPair, uint64_t>> range_counts;
      for (std::pair<AddrPair, uint64_t> p : binary.range_count_map) {
        if (p.first.first >= base_addr && p.first.second >= base_addr) {
          p.first.first -= base_addr;
          p.first.second -= base_addr;
          range_counts.emplace_back(p);
        }
      }
      std::sort(range_counts.begin(), range_counts.end());
      fprintf(output_fp.get(), "%zu\n", range_counts.size());
      for (const auto& p : range_counts) {
        fprintf(output_fp.get(), "%" PRIx64 "-%" PRIx64 ":%" PRIu64 "\n", p.first.first,
                p.first.second, p.second);
      }

      // Write addr_count_map. Sort the output by addrs.
      std::vector<std::pair<uint64_t, uint64_t>> address_counts;
      for (std::pair<uint64_t, uint64_t> p : binary.address_count_map) {
        if (p.first >= base_addr) {
          p.first -= base_addr;
          address_counts.emplace_back(p);
        }
      }
      std::sort(address_counts.begin(), address_counts.end());
      fprintf(output_fp.get(), "%zu\n", address_counts.size());
      for (const auto& p : address_counts) {
        fprintf(output_fp.get(), "%" PRIx64 ":%" PRIu64 "\n", p.first, p.second);
      }

      // Write branch_count_map. Sort the output by addrs.
      std::vector<std::pair<AddrPair, uint64_t>> branch_counts;
      for (std::pair<AddrPair, uint64_t> p : binary.branch_count_map) {
        if (p.first.first >= base_addr) {
          p.first.first -= base_addr;
          p.first.second = (p.first.second >= base_addr) ? (p.first.second - base_addr) : 0;
          branch_counts.emplace_back(p);
        }
      }
      std::sort(branch_counts.begin(), branch_counts.end());
      fprintf(output_fp.get(), "%zu\n", branch_counts.size());
      for (const auto& p : branch_counts) {
        fprintf(output_fp.get(), "%" PRIx64 "->%" PRIx64 ":%" PRIu64 "\n", p.first.first,
                p.first.second, p.second);
      }

      // Write the binary path in comment.
      fprintf(output_fp.get(), "// build_id: %s\n", key.build_id.ToString().c_str());
      fprintf(output_fp.get(), "// %s\n\n", key.path.c_str());
    }
    return true;
  }

 private:
  std::unordered_map<BinaryKey, AutoFDOBinaryInfo, BinaryKeyHash> binary_map_;
};

// Merge branch list data.
struct BranchListMerger {
  void AddETMBinary(const BinaryKey& key, ETMBinary& binary) {
    if (auto it = etm_data_.find(key); it != etm_data_.end()) {
      it->second.Merge(binary);
    } else {
      etm_data_[key] = std::move(binary);
    }
  }

  void AddLBRData(LBRData& lbr_data) {
    // 1. Merge binaries.
    std::vector<uint32_t> new_ids(lbr_data.binaries.size());
    for (size_t i = 0; i < lbr_data.binaries.size(); i++) {
      const BinaryKey& key = lbr_data.binaries[i];
      if (auto it = lbr_binary_id_map_.find(key); it != lbr_binary_id_map_.end()) {
        new_ids[i] = it->second;
      } else {
        uint32_t next_id = static_cast<uint32_t>(lbr_binary_id_map_.size()) + 1;
        new_ids[i] = next_id;
        lbr_binary_id_map_[key] = next_id;
        lbr_data_.binaries.emplace_back(key);
      }
    }

    // 2. Merge samples.
    auto convert_id = [&](uint32_t& binary_id) {
      if (binary_id != 0) {
        binary_id = (binary_id <= new_ids.size()) ? new_ids[binary_id - 1] : 0;
      }
    };

    for (LBRSample& sample : lbr_data.samples) {
      convert_id(sample.binary_id);
      for (LBRBranch& branch : sample.branches) {
        convert_id(branch.from_binary_id);
        convert_id(branch.to_binary_id);
      }
      lbr_data_.samples.emplace_back(std::move(sample));
    }
  }

  ETMBinaryMap& GetETMData() { return etm_data_; }

  LBRData& GetLBRData() { return lbr_data_; }

 private:
  ETMBinaryMap etm_data_;
  LBRData lbr_data_;
  std::unordered_map<BinaryKey, uint32_t, BinaryKeyHash> lbr_binary_id_map_;
};

// Write branch lists to a protobuf file specified by branch_list.proto.
static bool WriteBranchListFile(const std::string& output_filename, const ETMBinaryMap& etm_data,
                                const LBRData& lbr_data) {
  std::string s;
  if (!etm_data.empty()) {
    if (!ETMBinaryMapToString(etm_data, s)) {
      return false;
    }
  } else if (!lbr_data.samples.empty()) {
    if (!LBRDataToString(lbr_data, s)) {
      return false;
    }
  } else {
    // Don't produce empty output file.
    LOG(INFO) << "Skip empty output file.";
    unlink(output_filename.c_str());
    return true;
  }
  if (!android::base::WriteStringToFile(s, output_filename)) {
    PLOG(ERROR) << "failed to write to " << output_filename;
    return false;
  }
  return true;
}

class InjectCommand : public Command {
 public:
  InjectCommand()
      : Command("inject", "parse etm instruction tracing data",
                // clang-format off
"Usage: simpleperf inject [options]\n"
"--binary binary_name         Generate data only for binaries matching binary_name regex.\n"
"-i file1,file2,...           Input files. Default is perf.data. Support below formats:\n"
"                               1. perf.data generated by recording cs-etm event type.\n"
"                               2. branch_list file generated by `inject --output branch-list`.\n"
"                             If a file name starts with @, it contains a list of input files.\n"
"-o <file>                    output file. Default is perf_inject.data.\n"
"--output <format>            Select output file format:\n"
"                               autofdo      -- text format accepted by TextSampleReader\n"
"                                               of AutoFDO\n"
"                               branch-list  -- protobuf file in etm_branch_list.proto\n"
"                             Default is autofdo.\n"
"--dump-etm type1,type2,...   Dump etm data. A type is one of raw, packet and element.\n"
"--exclude-perf               Exclude trace data for the recording process.\n"
"--symdir <dir>               Look for binaries in a directory recursively.\n"
"\n"
"Examples:\n"
"1. Generate autofdo text output.\n"
"$ simpleperf inject -i perf.data -o autofdo.txt --output autofdo\n"
"\n"
"2. Generate branch list proto, then convert to autofdo text.\n"
"$ simpleperf inject -i perf.data -o branch_list.data --output branch-list\n"
"$ simpleperf inject -i branch_list.data -o autofdo.txt --output autofdo\n"
                // clang-format on
        ) {}

  bool Run(const std::vector<std::string>& args) override {
    GOOGLE_PROTOBUF_VERIFY_VERSION;
    if (!ParseOptions(args)) {
      return false;
    }

    CHECK(!input_filenames_.empty());
    if (IsPerfDataFile(input_filenames_[0])) {
      switch (output_format_) {
        case OutputFormat::AutoFDO:
          return ConvertPerfDataToAutoFDO();
        case OutputFormat::BranchList:
          return ConvertPerfDataToBranchList();
      }
    } else {
      switch (output_format_) {
        case OutputFormat::AutoFDO:
          return ConvertBranchListToAutoFDO();
        case OutputFormat::BranchList:
          return ConvertBranchListToBranchList();
      }
    }
  }

 private:
  bool ParseOptions(const std::vector<std::string>& args) {
    const OptionFormatMap option_formats = {
        {"--binary", {OptionValueType::STRING, OptionType::SINGLE}},
        {"--dump-etm", {OptionValueType::STRING, OptionType::SINGLE}},
        {"--exclude-perf", {OptionValueType::NONE, OptionType::SINGLE}},
        {"-i", {OptionValueType::STRING, OptionType::MULTIPLE}},
        {"-o", {OptionValueType::STRING, OptionType::SINGLE}},
        {"--output", {OptionValueType::STRING, OptionType::SINGLE}},
        {"--symdir", {OptionValueType::STRING, OptionType::MULTIPLE}},
    };
    OptionValueMap options;
    std::vector<std::pair<OptionName, OptionValue>> ordered_options;
    if (!PreprocessOptions(args, option_formats, &options, &ordered_options, nullptr)) {
      return false;
    }

    if (auto value = options.PullValue("--binary"); value) {
      binary_name_regex_ = RegEx::Create(*value->str_value);
      if (binary_name_regex_ == nullptr) {
        return false;
      }
    }
    if (auto value = options.PullValue("--dump-etm"); value) {
      if (!ParseEtmDumpOption(*value->str_value, &etm_dump_option_)) {
        return false;
      }
    }
    exclude_perf_ = options.PullBoolValue("--exclude-perf");

    for (const OptionValue& value : options.PullValues("-i")) {
      std::vector<std::string> files = android::base::Split(*value.str_value, ",");
      for (std::string& file : files) {
        if (android::base::StartsWith(file, "@")) {
          if (!ReadFileList(file.substr(1), &input_filenames_)) {
            return false;
          }
        } else {
          input_filenames_.emplace_back(file);
        }
      }
    }
    if (input_filenames_.empty()) {
      input_filenames_.emplace_back("perf.data");
    }
    options.PullStringValue("-o", &output_filename_);
    if (auto value = options.PullValue("--output"); value) {
      const std::string& output = *value->str_value;
      if (output == "autofdo") {
        output_format_ = OutputFormat::AutoFDO;
      } else if (output == "branch-list") {
        output_format_ = OutputFormat::BranchList;
      } else {
        LOG(ERROR) << "unknown format in --output option: " << output;
        return false;
      }
    }
    if (auto value = options.PullValue("--symdir"); value) {
      if (!Dso::AddSymbolDir(*value->str_value)) {
        return false;
      }
      // Symbol dirs are cleaned when Dso count is decreased to zero, which can happen between
      // processing input files. To make symbol dirs always available, create a placeholder dso to
      // prevent cleaning from happening.
      placeholder_dso_ = Dso::CreateDso(DSO_UNKNOWN_FILE, "unknown");
    }
    CHECK(options.values.empty());
    return true;
  }

  bool ReadFileList(const std::string& path, std::vector<std::string>* file_list) {
    std::string data;
    if (!android::base::ReadFileToString(path, &data)) {
      PLOG(ERROR) << "failed to read " << path;
      return false;
    }
    std::vector<std::string> tokens = android::base::Tokenize(data, " \t\n\r");
    file_list->insert(file_list->end(), tokens.begin(), tokens.end());
    return true;
  }

  bool ReadPerfDataFiles(const std::function<void(PerfDataReader&)> reader_callback) {
    if (input_filenames_.empty()) {
      return true;
    }

    std::string expected_data_type;
    for (const auto& filename : input_filenames_) {
      std::unique_ptr<RecordFileReader> file_reader = RecordFileReader::CreateInstance(filename);
      if (!file_reader) {
        return false;
      }
      std::string data_type = PerfDataReader::GetDataType(*file_reader);
      if (expected_data_type.empty()) {
        expected_data_type = data_type;
      } else if (expected_data_type != data_type) {
        LOG(ERROR) << "files have different data type: " << input_filenames_[0] << ", " << filename;
        return false;
      }
      std::unique_ptr<PerfDataReader> reader;
      if (data_type == "etm") {
        reader.reset(new ETMPerfDataReader(std::move(file_reader), exclude_perf_,
                                           binary_name_regex_.get(), etm_dump_option_));
      } else if (data_type == "lbr") {
        reader.reset(
            new LBRPerfDataReader(std::move(file_reader), exclude_perf_, binary_name_regex_.get()));
      } else {
        LOG(ERROR) << "unsupported data type " << data_type << " in " << filename;
        return false;
      }
      reader_callback(*reader);
      if (!reader->Read()) {
        return false;
      }
    }
    return true;
  }

  bool ConvertPerfDataToAutoFDO() {
    AutoFDOWriter autofdo_writer;
    auto afdo_callback = [&](const BinaryKey& key, AutoFDOBinaryInfo& binary) {
      autofdo_writer.AddAutoFDOBinary(key, binary);
    };
    auto reader_callback = [&](PerfDataReader& reader) { reader.AddCallback(afdo_callback); };
    if (!ReadPerfDataFiles(reader_callback)) {
      return false;
    }
    return autofdo_writer.Write(output_filename_);
  }

  bool ConvertPerfDataToBranchList() {
    BranchListMerger merger;
    auto etm_callback = [&](const BinaryKey& key, ETMBinary& binary) {
      merger.AddETMBinary(key, binary);
    };
    auto lbr_callback = [&](LBRData& lbr_data) { merger.AddLBRData(lbr_data); };

    auto reader_callback = [&](PerfDataReader& reader) {
      reader.AddCallback(etm_callback);
      reader.AddCallback(lbr_callback);
    };
    if (!ReadPerfDataFiles(reader_callback)) {
      return false;
    }
    return WriteBranchListFile(output_filename_, merger.GetETMData(), merger.GetLBRData());
  }

  bool ConvertBranchListToAutoFDO() {
    // Step1 : Merge branch lists from all input files.
    BranchListMerger merger;
    auto etm_callback = [&](const BinaryKey& key, ETMBinary& binary) {
      merger.AddETMBinary(key, binary);
    };
    auto lbr_callback = [&](LBRData& lbr_data) { merger.AddLBRData(lbr_data); };
    for (const auto& input_filename : input_filenames_) {
      BranchListReader reader(input_filename, binary_name_regex_.get());
      reader.AddCallback(etm_callback);
      reader.AddCallback(lbr_callback);
      if (!reader.Read()) {
        return false;
      }
    }

    // Step2: Convert ETMBinary and LBRData to AutoFDOBinaryInfo.
    AutoFDOWriter autofdo_writer;
    ETMBranchListToAutoFDOConverter converter;
    for (auto& p : merger.GetETMData()) {
      const BinaryKey& key = p.first;
      ETMBinary& binary = p.second;
      std::unique_ptr<AutoFDOBinaryInfo> autofdo_binary = converter.Convert(key, binary);
      if (autofdo_binary) {
        // Create new BinaryKey with kernel_start_addr = 0. Because AutoFDO output doesn't care
        // kernel_start_addr.
        autofdo_writer.AddAutoFDOBinary(BinaryKey(key.path, key.build_id), *autofdo_binary);
      }
    }
    if (!merger.GetLBRData().samples.empty()) {
      LBRData& lbr_data = merger.GetLBRData();
      std::optional<std::vector<AutoFDOBinaryInfo>> binaries = ConvertLBRDataToAutoFDO(lbr_data);
      if (!binaries) {
        return false;
      }
      for (size_t i = 0; i < binaries.value().size(); ++i) {
        autofdo_writer.AddAutoFDOBinary(lbr_data.binaries[i], binaries.value()[i]);
      }
    }

    // Step3: Write AutoFDOBinaryInfo.
    return autofdo_writer.Write(output_filename_);
  }

  bool ConvertBranchListToBranchList() {
    // Step1 : Merge branch lists from all input files.
    BranchListMerger merger;
    auto etm_callback = [&](const BinaryKey& key, ETMBinary& binary) {
      merger.AddETMBinary(key, binary);
    };
    auto lbr_callback = [&](LBRData& lbr_data) { merger.AddLBRData(lbr_data); };
    for (const auto& input_filename : input_filenames_) {
      BranchListReader reader(input_filename, binary_name_regex_.get());
      reader.AddCallback(etm_callback);
      reader.AddCallback(lbr_callback);
      if (!reader.Read()) {
        return false;
      }
    }
    // Step2: Write ETMBinary.
    return WriteBranchListFile(output_filename_, merger.GetETMData(), merger.GetLBRData());
  }

  std::unique_ptr<RegEx> binary_name_regex_;
  bool exclude_perf_ = false;
  std::vector<std::string> input_filenames_;
  std::string output_filename_ = "perf_inject.data";
  OutputFormat output_format_ = OutputFormat::AutoFDO;
  ETMDumpOption etm_dump_option_;

  std::unique_ptr<Dso> placeholder_dso_;
};

}  // namespace

void RegisterInjectCommand() {
  return RegisterCommand("inject", [] { return std::unique_ptr<Command>(new InjectCommand); });
}

}  // namespace simpleperf